首页> 外文OA文献 >Nanostructured Oxygen Carriers for Chemical Looping Combustion and Chemical Looping Hydrogen Production
【2h】

Nanostructured Oxygen Carriers for Chemical Looping Combustion and Chemical Looping Hydrogen Production

机译:用于化学循环燃烧和化学循环制氢的纳米结构氧气载体

摘要

Chemical looping combustion (CLC) is an emerging technology for clean energy-production. In CLC, an oxygen carrier is periodically oxidized with air and then reduced in contact with a fuel. CLC is thus a flame-less oxy-fuel combustion without an air separation unit, producing sequestration-ready CO2-streams without significant energy penalty. However, a major hurdle towards technical implementation of CLC is the development of robust oxygen carrier materials. In this thesis, we report on a combined study of theoretical and experimental investigations of oxygen carriers for CLC. A detailed thermodynamic screening of oxygen carriers based on several comparison criteria was carried out to come up with the best candidates for CLC and then effect of sulfur contamination in the fuel stream on the performance of these selected oxygen carriers was studied. In sulfur-free streams the carriers show stable and fast reduction and re-oxidation kinetics. Sulfur contamination results not only in sulfidation of the metal carrier component, but also in partial sulfidation of the support matrix which marginally alters the redox kinetics but does not affect carrier stability. Interestingly, the support sulfidation leads to a significant increase in the oxygen carrying capacity of the carriers. Further investigation of Cu-based carriers showed that efficient desulfurization of the fuel reactor exit stream is achievable with quantitative S-recovery in the air reactor effluent. Beyond combustion, chemical looping can be used to produce hydrogen by replacing air with steam as oxidant in a 'chemical looping steam reforming' process (CLSR). The effluent of the oxidizer is PEMFC-ready hydrogen without further purification steps, resulting in significant process intensification. Challenges in CLSR are slower steam vs air oxidation kinetics, high-temperature carrier stability, and attrition due to large solids transport in a two-bed process. In the final part of the thesis, we report on experimental investigations of Fe-based nanostructured carriers to study their oxidation kinetics and high-temperature stability. Effect of temperature and particle size on hydrogen production and carrier utilization was studied which further demonstrated the importance of nano-sizing of the carrier. Finally, a reactor model was developed demonstrating that a fixed-bed approach is feasible for CLSR.
机译:化学循环燃烧(CLC)是一种用于清洁能源生产的新兴技术。在CLC中,氧气载体会定期被空气氧化,然后与燃料接触而还原。因此,CLC是无需空气分离装置的无焰含氧燃料燃烧,可产生可螯合的CO2流,而不会产生明显的能量损失。但是,CLC技术实施的主要障碍是开发坚固的氧气载体材料。在这篇论文中,我们报道了CLC中氧气载体的理论和实验研究的结合研究。根据几个比较标准对氧气载体进行了详细的热力学筛选,以得出CLC的最佳候选者,然后研究了燃料流中硫污染对这些所选氧气载体性能的影响。在无硫物流中,载体表现出稳定,快速的还原和再氧化动力学。硫污染不仅导致金属载体组分的硫化,而且导致载体基质的部分硫化,这部分地改变了氧化还原动力学,但不影响载体的稳定性。有趣的是,载体硫化导致载体的载氧能力显着增加。对基于铜的载体的进一步研究表明,通过在空气反应堆流出物中进行定量的S回收,可以实现燃料反应堆出口流的有效脱硫。除燃烧外,在“化学循环蒸汽重整”过程(CLSR)中,通过用蒸汽代替空气作为氧化剂,化学循环还可用于生产氢气。氧化剂的流出物为PEMFC就绪的氢气,无需进一步的纯化步骤,从而显着提高了工艺强度。 CLSR面临的挑战是蒸汽对空气的氧化动力学较慢,高温载体的稳定性以及由于两床工艺中大量固体的运输而导致的磨损。在论文的最后,我们报道了铁基纳米结构载体的实验研究,以研究其氧化动力学和高温稳定性。研究了温度和粒度对氢气产生和载体利用的影响,这进一步证明了载体纳米尺寸的重要性。最后,开发了一个反应堆模型,表明固定床方法对于CLSR是可行的。

著录项

  • 作者

    Solunke Rahul Dushyantrao;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号