首页> 外文OA文献 >Repair of segmental bone defects with fiber-reinforced composite: a study of material development and an animal model on rabbits
【2h】

Repair of segmental bone defects with fiber-reinforced composite: a study of material development and an animal model on rabbits

机译:纤维增强复合材料修复节段性骨缺损:兔材料开发和动物模型的研究

摘要

The Repair of segmental defects in load-bearing long bones is a challenging task because of the diversity ofthe load affecting the area; axial, bending, shearing and torsional forces all come together to test the stability/integrity of the bone. The natural biomechanical requirements for bone restorative materials include strength to withstand heavy loads, and adaptivity to conform into a biological environment without disturbing ordamaging it. Fiber-reinforced composite (FRC) materials have shown promise, as metals and ceramics havebeen too rigid, and polymers alone are lacking in strength which is needed for restoration. The versatility ofthe fiber-reinforced composites also allows tailoring of the composite to meet the multitude of bone propertiesin the skeleton.The attachment and incorporation of a bone substitute to bone has been advanced by different surfacemodification methods. Most often this is achieved by the creation of surface texture, which allows bonegrowth, onto the substitute, creating a mechanical interlocking. Another method is to alter the chemicalproperties of the surface to create bonding with the bone – for example with a hydroxyapatite (HA) or abioactive glass (BG) coating.A novel fiber-reinforced composite implant material with a porous surface was developed for bonesubstitution purposes in load-bearing applications. The material’s biomechanical properties were tailored withunidirectional fiber reinforcement to match the strength of cortical bone. To advance bone growth onto thematerial, an optimal surface porosity was created by a dissolution process, and an addition of bioactive glassto the material was explored. The effects of dissolution and orientation of the fiber reinforcement were alsoevaluated for bone-bonding purposes. The Biological response to the implant material was evaluated in a cellculture study to assure the safety of the materials combined. To test the material’s properties in a clinicalsetting, an animal model was used. A critical-size bone defect in a rabbit’s tibia was used to test the materialin a load-bearing application, with short- and long-term follow-up, and a histological evaluation of theincorporation to the host bone.The biomechanical results of the study showed that the material is durable and the tailoring of the propertiescan be reproduced reliably. The Biological response - ex vivo - to the created surface structure favours theattachment and growth of bone cells, with the additional benefit of bioactive glass appearing on the surface.No toxic reactions to possible agents leaching from the material could be detected in the cell culture studywhen compared to a nontoxic control material. The mechanical interlocking was enhanced - as expected -with the porosity, whereas the reinforcing fibers protruding from the surface of the implant gave additionalstrength when tested in a bone-bonding model. Animal experiments verified that the material is capable ofwithstanding load-bearing conditions in prolonged use without breaking of the material or creating stressshielding effects to the host bone. A Histological examination verified the enhanced incorporation to hostbone with an abundance of bone growth onto and over the material. This was achieved with minimal tissuereactions to a foreign body.An FRC implant with surface porosity displays potential in the field of reconstructive surgery, especiallyregarding large bone defects with high demands on strength and shape retention in load-bearing areas or flatbones such as facial / cranial bones. The benefits of modifying the strength of the material and adjusting thesurface properties with fiber reinforcement and bone-bonding additives to meet the requirements of differentbone qualities are still to be fully discovered.
机译:由于负载的多样性影响该区域,修复承重长骨中的节段性缺陷是一项艰巨的任务。轴向力,弯曲力,剪切力和扭转力共同作用,以测试骨骼的稳定性/完整性。骨骼修复材料的自然生物力学要求包括承受重负荷的强度,以及适应生物环境而不破坏或破坏其的适应性。纤维增强复合材料(FRC)表现出了希望,因为金属和陶瓷太硬了,仅聚合物就缺乏恢复所需的强度。纤维增强复合材料的多功能性还可以定制复合材料,以满足骨骼中多种骨骼的特性。骨骼替代物在骨骼上的附着和结合已通过不同的表面改性方法得到了发展。通常,这是通过创建表面纹理来实现的,该纹理允许骨骼生长到替代品上,从而形成机械互锁。另一种方法是改变表面的化学性质以与骨骼形成粘合,例如使用羟基磷灰石(HA)或生物活性玻璃(BG)涂层。一种具有多孔表面的新型纤维增强复合植入材料被开发用于骨骼替代在承重应用中。该材料的生物力学特性是通过单向纤维增强来定制的,以匹配皮质骨的强度。为了促进骨骼生长到材料上,通过溶解过程创建了最佳的表面孔隙率,并探索了向材料中添加生物活性玻璃的方法。为了骨结合的目的,还评估了纤维增强物的溶解和取向的影响。在细胞培养研究中评估了对植入物材料的生物学反应,以确保组合材料的安全性。为了在临床环境中测试材料的特性,使用了动物模型。兔子胫骨的一个临界大小的骨缺损被用于在承重应用中对材料进行测试,并进行了短期和长期的随访,并对其掺入宿主骨进行了组织学评估。该研究的生物力学结果表明该材料是耐用的,并且性能的调整可以可靠地复制。对所形成的表面结构的离体生物学反应有利于骨细胞的附着和生长,并在表面上具有生物活性玻璃的额外好处。在细胞培养研究中,未检测到对从材料中浸出的可能物质的毒性反应。与无毒对照材料相比。如所预期的那样,通过孔隙率增强了机械互锁,而当在骨结合模型中进行测试时,从植入物表面突出的增强纤维具有额外的强度。动物实验证明,该材料能够长时间使用而承受负载,而不会破坏该材料或对宿主骨骼产生应力防护作用。组织学检查证实,在材料上和材料上有大量的骨生长,从而增强了与宿主的结合。具有最小异物组织反应的FRC植入物具有表面孔隙率,在重建手术领域表现出潜力,特别是对于较大的骨缺损,对承重区域或扁平骨(例如面部/颅骨)的强度和形状保持要求很高骨头。用纤维增强和骨结合添加剂来改变材料强度并调整表面性能以满足不同骨质要求的好处仍有待充分发现。

著录项

  • 作者

    Hautamäki Mikko;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号