首页> 外文OA文献 >Tracking environmental change in seagrass meadows: understanding indicator behaviour across space and time
【2h】

Tracking environmental change in seagrass meadows: understanding indicator behaviour across space and time

机译:追踪海草草甸的环境变化:了解跨时空的指标行为

摘要

[eng] Nearshore marine ecosystems like seagrass meadows face a wide range of anthropogenic influences, impacting the system at different spatial and temporal scales. Managing these systems in the face of these pressures requires detailed knowledge of how seagrass habitats respond to these various threats. A plethora of useful indicators have been developed to help managers and policy makers track seagrass meadow health and status, detect environmental impacts or measure the effectiveness of management interventions. However, choosing between these indicators can often be a daunting task since they vary considerably in their overall behaviour in relation to ecosystem and environmental changes. This thesis assesses the most commonly employed seagrass indicators to determine if they are adequate and appropriate to the specific needs of coastal ecosystem management. This assessment is based on evaluating three fundamental characteristics of each indicator – the robustness of its response, the specificity or generality of its response, and the time of response. We use a variety of complementary approaches to explore indicator behaviour. In Chapter 3, we use field-based studies to assess how seagrass indicators respond to the construction of a breakwater in the vicinity of a Posidonia oceanica seagrass meadow. Chapters 4 and 5 examine long-term trends in seagrass indicators to improving water quality conditions after significant regional management interventions. In addition, in Chapter 6, we comprehensively review seagrass indicator responses to multiple stressors. Chapters 3, 4 and 5 focus largely on the Catalan Coast in the Mediterranean with Posidonia oceanica as a target species. Chapter 6 in contrast is a broad review of a wide range of indicators used across several seagrass species worldwide. A central learning across these studies was that the level of biological organisation of the indicator (i.e. Physiological, biochemical, growth, morphological, structural or demographic) is critical in determining the specificity or generality of response: the lower the level (e.g. biochemical), the most specific the response, while the higher the level (e.g. population, community), the wider the response. Thus, biochemical indicators are ideal to determine the identity or even the origin of a pressure while structural indicators, in contrast, are useful as generic indicators of declining conditions. Response times are also heavily determined by the level of organisation, particularly in the detection of improving environmental quality along the Catalan coast. Biochemical indicators responded unequivocally to water quality improvements observed both in the experimental field study (Chapter 3) as well as in the analysis of the long-term data series (Chapters 4 and 5). The meta-analysis confirmed that these trends in specificity and response time were not unique to Posidonia oceanica or the Catalan coast and highlighted the critical role of plant size in determining indicator time responses. Large species take considerably longer to register a response to environmental degradation as well as improvement – a critical factor that needs to be accounted for in designing monitoring programmes and interpreting ecosystem trends. Taken together, these results suggest that differences in the behaviour of seagrass indicators require that they should be carefully selected to match the objectives of management. Based on the results reported in this thesis, where different sets of indicators have been proven successful for given management objectives, we finally develop a simple decision tree to help managers chose the most reliable sets of indicators matching their objectives. Understanding the diversity of responses that seagrass indicators display can make them a powerful set of tools in the ecosystem manager’s toolkit. Carefully employed, they can serve as bespoke solutions to a wide range of management objectives as we seek to monitor and protect these vital ecosystems and coastal water quality in the face of increasing coastal pressures.
机译:[eng]近海海洋生态系统(如海草草甸)面临各种人为影响,在不同的时空尺度上影响着该系统。面对这些压力来管理这些系统需要详细了解海草栖息地如何应对这些各种威胁。已经开发了许多有用的指标,以帮助管理人员和决策者跟踪海草草甸的健康和状况,检测环境影响或衡量管理干预措施的有效性。但是,在这些指标之间进行选择通常可能是一项艰巨的任务,因为它们在与生态系统和环境变化相关的总体行为方面存在很大差异。本文评估了最常用的海草指标,以确定它们是否足够和适合沿海生态系统管理的特定需求。该评估基于评估每个指标的三个基本特征–响应的鲁棒性,响应的特异性或普遍性以及响应时间。我们使用多种补充方法来探索指标行为。在第3章中,我们使用基于实地的研究来评估海草指标如何响应Posidonia oceanica海草草甸附近防波堤的建设。第4章和第5章研究了在重大区域管理干预措施之后海草指标改善水质状况的长期趋势。此外,在第6章中,我们全面回顾了海草指标对多种压力源的响应。第3、4和5章主要讨论地中海的加泰罗尼亚海岸,以大洋波塞冬为目标物种。相比之下,第6章对全球几种海草物种所使用的广泛指标进行了广泛回顾。这些研究的中心学习是,指标的生物学组织水平(即生理,生化,生长,形态,结构或人口统计学)对于确定响应的特异性或普遍性至关重要:水平越低(例如生化),响应最具体,而级别(例如人口,社区)越高,则响应越广。因此,生化指标是确定压力的身份甚至起源的理想选择,而结构指标则可以用作条件下降的通用指标。响应时间在很大程度上还取决于组织的级别,尤其是在检测加泰罗尼亚海岸沿线环境质量改善方面。生化指标对实验现场研究(第3章)以及长期数据分析(第4章和第5章)中观察到的水质改善做出了明确的响应。荟萃分析证实,这些特异性和响应时间趋势并非对海洋波塞冬或加泰罗尼亚海岸具有独特性,并强调了植物大小在确定指标时间响应中的关键作用。大型物种需要相当长的时间才能记录对环境恶化和改善的反应,这是设计监测计划和解释生态系统趋势时必须考虑的一个关键因素。综上所述,这些结果表明,海草指标行为的差异要求对它们进行仔细选择以符合管理目标。根据本论文报告的结果,在证明给定管理目标成功使用不同指标集的基础上,我们最终开发了一个简单的决策树,以帮助管理人员选择与其目标相匹配的最可靠指标集。了解海草指标显示的响应的多样性,可以使它们成为生态系统管理器工具包中一组功能强大的工具。认真地使用它们,可以作为针对各种管理目标的定制解决方案,因为我们在面对不断增加的沿海压力的情况下寻求监控和保护这些重要的生态系统和沿海水质。

著录项

  • 作者

    Roca Carceller Guillem;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号