首页> 外文OA文献 >Quantenchemische Untersuchungen metastabiler Oxide und Oxidnitride der Chrom- und Vanadiumgruppe
【2h】

Quantenchemische Untersuchungen metastabiler Oxide und Oxidnitride der Chrom- und Vanadiumgruppe

机译:铬和钒基团的亚稳态氧化物和氮氧化物的量子化学研究

摘要

In this work an investigation of different metastable oxides and oxynitrides of the chromium and vanadium group employing density-functional theory is presented. The herein presented calculations deliver additional information in form of extended characterization of previously synthesized compounds such as δ-TaON, that are hard to obtain via experimental work. Furthermore, the calculations also present possible synthesis routes to new compounds, that are verified through experimental work, such as the high pressure modification of MoO2, or suggest possible metastable polymorphs of existing compounds. The compound TaON is known to form a few different polymorphs such as the recently synthesized δ-TaON with Anatasstructure. The most likely anionic ordering of δ-TaON and its dynamic stability could be verified through quantumchemical calculations. It is roughly 15.6 kJ/mol less stable than the thermodynamically stable Baddeleyitemodification and only 6.4 kJ/mol less stable than the metastable γ-TaON. Thermodynamic calculations reveal an instabillity compared to the other phases especially at low temperatures, the observed phase transition is therefore essentially controlled through kinetics. This modification can furthermore be classified as metastable. The dioxides of molybdenum and tungsten both crystallize in a distorted rutile-type, also known as VO2-type. Tungstendioxide is also known to form a high pressure modification in the [hp-WO2]-type that forms at about 5 GPa. A further possible high pressure polymorph could be identified for both dioxides: the orthorhommbic [ortho-TiO2]-type forms at about 28 GPa for MoO2 and 38 GPa for WO2. Three possible polymorphs could be identified for both dioxides at ambient pressure: [mod-TiO2], [SnO2(II)] und [α-PbO2]. The [mod-TiO2]-structure shows strong similarities to the thermodynamically stable [VO2]-structure and has possibly been synthesized for MoO2, but falsely characterised as a rutile-structure. Calculations on the sesquioxides of molybdenum and tungsten revealed a slightly modified corundum-structure as the most stable crystal structure for both compounds. A possible high pressure synthesis via the metal and the dioxide is hampered by the phase transition of the dioxides at 2 / 5 GPa, as the synthesis runs via the respective high pressure polymorphs. This results in a synthesis pressure of about 60 GPa for W2O3 and more than 100 GPa for Mo2O3. Both pressures are experimentally very hard to achieve, a synthesis of W2O3 seems to be more likely. Measurements on compounds with the general composition Mo2(O,N,□)5 suggest the [VNb9O24.9]-structure for the hypothetical phase Mo2O5. Quantum chemical calculations confirmed this structure as the most stable of the investigated M2O5-strucutres and classified it as dynamically stable. Based on this structure, different doped variants were calculated, that depict the experimentally observed phases Mo2O3.38N1.08□0.54 and Mo2O3.70N0.86□0.44 (Typ 1 or Typ 2). The calculations only lead to energetic differences of a few kJ/mol between different vacancy and anionic orderings so that a statistic ordering has to be assumed.A doping of NbON with scandium leads to a progressing stabilisation of the anatase and the rutile modification. The anatase modification is energetically preferred over the baddeleyite modification when doped with 20% scandium (equals ScNb4O7N3). The experimentally observed rutile structure is calculated to be 0.15 eV less stable. When considering the synthesis temperature of up to 1000 K as well as the configurational entropy the energy difference can change significantly, but these calculations are very time consuming.
机译:在这项工作中,利用密度泛函理论研究了铬和钒基团的不同亚稳态氧化物和氧氮化物。本文介绍的计算以扩展的形式提供了先前合成的化合物(例如δ-TaON)的附加信息,这些信息很难通过实验工作获得。此外,计算还提供了新化合物可能的合成路线,这些路线已通过实验工作进行了验证,例如MoO2的高压改性,或表明了现有化合物可能的亚稳态多晶型物。已知化合物TaON会形成一些不同的多晶型物,例如最近合成的具有Anatasstructure的δ-TaON。 δ-TaON最可能的阴离子有序性及其动态稳定性可以通过量子化学计算得到验证。它比热力学稳定的Baddeleyite变质稳定度低约15.6 kJ / mol,比亚稳态γ-TaON稳定度低6.4 kJ / mol。热力学计算表明,与其他相相比,尤其是在低温下,其不稳定,因此观察到的相变基本上是通过动力学控制的。该修改可以进一步分类为亚稳。钼和钨的二氧化物都以扭曲的金红石型(也称为VO 2型)结晶。众所周知,二氧化钨会形成[hp-WO2]型的高压改性,在约5 GPa的压力下形成。可以确定两种二氧化物的另一种可能的高压多晶型物:MoO2的正交晶体[ortho-TiO2]型形式,WO2的离心形式为38 GPa。在环境压力下,两种二氧化物都可以鉴定出三种可能的多晶型物:[mod-TiO2],[SnO2(II)]和[α-PbO2]。 [mod-TiO2]结构与热力学稳定的[VO2]结构具有很强的相似性,并且可能已经合成了MoO2,但错误地将其表征为金红石结构。对钼和钨的倍半氧化物的计算表明,作为两种化合物的最稳定的晶体结构,刚玉结构都有轻微的改变。当通过各自的高压多晶型物进行合成时,通过金属和二氧化物的可能的高压合成会受到2/5 GPa处的二氧化物的相变的阻碍。这导致W2O3的合成压力约为60 GPa,Mo2O3的合成压力超过100 GPa。从实验上讲,这两个压力都很难实现,似乎更有可能合成W2O3。对一般组成为Mo2(O,N,□)5的化合物进行的测量表明,假设相Mo2O5为[VNb9O24.9]-结构。量子化学计算证实了该结构是所研究的M2O5结构中最稳定的,并将其分类为动态稳定的。基于此结构,计算出不同的掺杂变体,这些变体描述了实验观察到的Mo2O3.38N1.08□0.54和Mo2O3.70N0.86□0.44相(类型1或类型2)。计算仅导致不同的空位和阴离子有序之间的能量差为几千焦耳/摩尔,因此必须假定统计有序.NbON掺杂scan会导致锐钛矿的稳定化和金红石型改性。当掺杂有20%的((等于ScNb4O7N3)时,在能量上优选锐钛矿变体比坏钙变体变体。实验观察到的金红石结构的稳定性降低了0.15 eV。当考虑到高达1000 K的合成温度以及组态熵时,能量差会发生显着变化,但是这些计算非常耗时。

著录项

  • 作者

    Becker Nils;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号