首页> 外文OA文献 >Berechnung und Bewertung der Gesamtleistungsfähigkeit von Eisenbahnnetzen
【2h】

Berechnung und Bewertung der Gesamtleistungsfähigkeit von Eisenbahnnetzen

机译:铁路网络总体性能的计算和评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Calculation and assessment of overall capacity in railway networkOne of the main objectives of railway operation research is the assessment and evalua-tion of railway capacity. In this context, capacity denotes the possible number of train runs, which can be operated on the infrastructure compliant to a predefined level of ser-vice.In view of the forecasted increase of rail traffic in Europe the optimal use of the existing infrastructure is becoming increasingly important. In this regard, the analysis of the re-sidual capacity of railway stations and lines, respectively, is an essential prerequisite to assess the feasibility of additional traffic volume in the network. In medium- and long-term planning of infrastructure and operations analytical queueing-based approaches have been widely used to determine the capacity. Besides being ap-plicable to existing timetables these methods are particularly suited to cope with uncer-tain input, e.g. if only a rough operational concept, but no precise timetable exists. Ac-cording to the state of the art in this sector, the railway network is generally decomposed into smaller infrastructure elements such as lines, set of tracks and route nodes. In terms of capacity, these elements are investigated individually, whereas interdependencies between different elements and the capacity of the entire network cannot be assessed, globally. However, it is precisely the overall capacity, and not the individual results for lines and nodes, which are of particular interest for infrastructure and timetable planning.The goal of this thesis is to provide an approach enabling the optimal utilization of the available capacity in railway networks. By taking a network perspective on capacity in-cluding alternative train routings the developed method allows for a detailed description and capacity evaluation of infrastructure modifications. Apart from the identification and prevention of system bottlenecks in infrastructure planning it also provides valuable in-sights in timetable design facilitating a demand oriented design of operations. At this point, the approach is not limited to the construction of new timetables from scratch, but can also be used to optimally attribute residual capacities to additional train runs in exist-ing timetables. In the present work, the calculation and assessment of overall capacity in railway net-works is performed using a macroscopic model based on railway lines, set of tracks and route nodes. The capacity allocation for train courses is based on a two-stage model. The first step consists of finding all economically feasible train paths for the demanded relations by solving a shortest-path problem. In the second process step, infrastructure capacity is assigned to individual trains using a mixed-integer programming approach. The objective of the routing problem is to maximize the number of feasible train runs through the network. The capacity is determined based on a train specific extrapolation of the existing operating program on each infrastructure section.To determine the individual capacities of lines, set of tracks and route nodes, which pro-vide constraints to the routing MIP commonly used analytical procedures in railway ca-pacity analysis are used. Currently, these procedures rely on differing modeling tech-niques and input data requirements. Capacity analysis of railway stations, for example, usually relies on so-called scheduled waiting times, which originate in timetabling when trains need to be shifted from their original timeslots due to conflicts with other train runs. The assessment of railway lines, by contrast, is performed based on knock-on delays, which arise in operations due to conflicts between trains arising from perturbations or initial delays in the planned timetable. In order to ensure the comparability of the calcula-tion of the capacities for the different infrastructure elements, a methodology for the standardization of the different approaches is developed. For example, the applicability of the Strele-formula – which has previously been used to model railway lines – has been extended to route nodes by incorporating a parameter concatenating different train moves. For the first time, the calculation of capacity for railway lines and railway nodes can now be carried out based on the same database.The presented approach has been validated based on prototypical calculations for a realistic subnetwork of the size of North Rhine-Westphalia. The network consists of 51 set of tracks, 102 route nodes and 150 railway lines. It has been shown that, by optimally assigning residual network capacity based on the developed method, the number of train runs on this network can be increased by up to 18%. The methodology hence provides a significant improvement in network and timetable planning.
机译:铁路网络总容量的计算和评估铁路运营研究的主要目标之一是对铁路容量的评估和评估。在这种情况下,容量表示可能的火车运行次数,可以在符合预定服务水平的基础设施上运行。鉴于欧洲铁路运输量的预计增长,对现有基础设施的最佳利用正在变得越来越重要。越来越重要。在这方面,分别分析火车站和线路的剩余容量是评估网络中增加交通量可行性的必要前提。在基础结构和运营的中长期规划中,基于分析排队的方法已被广泛用于确定容量。除了适用于现有时间表,这些方法还特别适用于处理不确定的输入,例如如果只是一个粗略的操作概念,而没有确切的时间表。根据该领域的最新技术,通常将铁路网络分解为较小的基础设施元素,例如线路,轨道组和路线节点。在容量方面,这些要素是单独进行调查的,而不同要素之间的相互依赖性和整个网络的容量无法进行全局评估。然而,恰恰是总体容量,而不是线路和节点的单个结果,这对于基础设施和时间表的规划尤为重要。本文的目的是提供一种能够最佳利用铁路可用容量的方法网络。通过从网络角度考虑容量,包括替代火车路线,所开发的方法可以对基础设施进行详细描述并进行容量评估。除了在基础架构规划中识别和预防系统瓶颈之外,它还提供了时间表设计方面的宝贵见解,从而促进了面向需求的运营设计。在这一点上,该方法不仅限于从头开始构建新的时间表,还可以用于将剩余容量最佳地归因于现有时间表中的其他列车运行。在当前的工作中,使用基于铁路线,轨道集和路线节点的宏观模型对铁路网络的总容量进行计算和评估。火车课程的能力分配基于两阶段模型。第一步是通过解决最短路径问题,找到所需关系的所有经济可行的火车路径。在第二个步骤中,使用混合整数编程方法将基础设施容量分配给各个列车。选路问题的目的是使通过网络的可行列车数量最大化。容量是根据每个基础设施部分上现有运营程序的特定于列车的外推法确定的。要确定线路,轨道集和路线节点的单独容量,这会给铁路中常用的路线选择MIP分析程序提供约束使用容量分析。当前,这些过程依赖于不同的建模技术和输入数据要求。例如,火车站的容量分析通常依赖于所谓的计划等待时间,该等待时间起源于时间表的发生,即由于与其他列车运行的冲突,需要将火车从其原始时隙中移出。相比之下,对铁路线的评估是基于爆震延迟进行的,而爆震延迟是由于火车之间的冲突(由于计划的时间表中的干扰或最初的延迟)而引起的。为了确保不同基础设施要素的能力计算的可比性,开发了一种标准化不同方法的方法。例如,Strele公式的适用性(以前已用于对铁路线进行建模)已通过合并连接不同列车运行的参数而扩展到路线节点。现在可以第一次在同一数据库的基础上进行铁路线和铁路节点的通行能力计算。所提出的方法已经在原型计算的基础上针对北莱茵-威斯特法伦州大小的现实子网进行了验证。该网络由51条轨道,102条路线节点和150条铁路线组成。已经表明,通过基于所开发的方法最优地分配剩余网络容量,该网络上运行的列车数量最多可以增加18%。因此,该方法大大改善了网络和时间表的计划。

著录项

  • 作者

    Meirich Christian;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号