首页> 外文OA文献 >Numerical methods for mass transport equations in two-phase incompressible flows
【2h】

Numerical methods for mass transport equations in two-phase incompressible flows

机译:两相不可压缩流动中传质方程的数值方法

摘要

In this thesis, we presented numerical methods for discretizing and solving the mass transport problem in two-phase flows. The level set method is used for capturing the time-dependent interface. The motion of the fluid is described by the two-phase Navier-Stokes equations. For the spatial discretization of these equations we use the known methods in the literature, namely the emph{improved} Laplace-Beltrami discretization for the surface force and the extended finite element (XFEM) for the pressure approximation. The combination of these methods delivers optimal error bounds when the surface tension coefficient is constant. For the general case with a variable surface tension coefficient, we introduce a new discretization of the localized surface force term. The solution of the mass transport equation must satisfy certain interface conditions, which imply that in general both the concentration and its derivatives are discontinuous across the interface. A simple transformation is often used in the literature to eliminate the discontinuity of the solution, which, however, results in a suboptimal approximation error bound O(h^{1/2}) in the L^2 norm for the finite element discretization. We use the Nitsche-XFEM method to handle the Henry condition and obtain an optimal error estimate O(h^2) in the L^2-norm for the spatial discretization in the case of a emph{stationary} interface. The semi-discretization resulting from the Nitsche-XFEM method is combined with the standard theta-scheme and an optimal time discretization error bound is also obtained. This method can also be applied for problem with moving interface but a full error analysis is not available. Finally, we performed numerical simulations of the coupled two-phase Navier-Stokes and mass transport equations for rising droplet problems for both cases of constant and concentration-dependent surface tension coefficients. For the latter case, different phenomena were observed, such as the occurrence of the so-called stagnant cap in the velocity field and a significant change in the droplet rising velocity. Due to the absence of a stabilization method for the discretization of the mass transport problem, we restrict ourselves to the case of medium diffusivity instead of the physically correct (much smaller) diffusivity. Effects of the initial concentration and the size of the convection (relative to the diffusion) on the droplet rising velocity and the droplet concentration at steady state are investigated.
机译:本文提出了离散化和求解两相流传质问题的数值方法。级别设置方法用于捕获时间相关的接口。流体的运动由两相Navier-Stokes方程描述。对于这些方程式的空间离散化,我们使用文献中的已知方法,即对表面力进行Emph {改进的} Laplace-Beltrami离散化,并针对压力逼近使用扩展有限元(XFEM)。当表面张力系数恒定时,这些方法的组合可提供最佳误差范围。对于表面张力系数可变的一般情况,我们引入了局部表面力项的新离散化。传质方程的解必须满足某些界面条件,这意味着一般来说,浓度及其导数在界面上都是不连续的。在文献中经常使用简单的变换来消除解的不连续性,但是,这会导致有限元离散化L ^ 2范数中的次优逼近误差界O(h ^ {1/2})。我们使用Nitsche-XFEM方法处理亨利条件,并在Emph {stationary}接口的情况下针对空间离散化在L ^ 2-范数中获得最佳误差估计O(h ^ 2)。 Nitsche-XFEM方法产生的半离散化与标准theta方案相结合,并且还获得了最佳的时间离散化误差界。该方法也可以用于移动界面的问题,但是无法进行完整的错误分析。最后,对于恒定和浓度相关的表面张力系数的情况,我们针对上升液滴问题对耦合的两相Navier-Stokes方程和传质方程进行了数值模拟。对于后一种情况,观察到了不同的现象,例如在速度场中出现了所谓的停滞盖,并且液滴的上升速度发生了显着变化。由于缺乏解决大规模运输问题离散化的稳定方法,因此我们将自己局限于中等扩散率的情况,而不是物理上正确的(小得多的)扩散率。研究了初始浓度和对流大小(相对于扩散)对稳态时液滴上升速度和液滴浓度的影响。

著录项

  • 作者

    Nguyen Trung Hieu;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号