首页> 外文OA文献 >Methods for Multilevel Parallelism on GPU Clusters: Application to a Multigrid Accelerated Navier-Stokes Solver
【2h】

Methods for Multilevel Parallelism on GPU Clusters: Application to a Multigrid Accelerated Navier-Stokes Solver

机译:在GPU群集上进行多级并行化的方法:在多网格加速Navier-Stokes解算器中的应用

摘要

Computational Fluid Dynamics (CFD) is an important field in high performance computing with numerous applications. Solving problems in thermal and fluid sciences demands enormous computing resources and has been one of the primary applications used on supercomputers and large clusters. Modern graphics processing units (GPUs) with many-core architectures have emerged as general-purpose parallel computing platforms that can accelerate simulation science applications substantially. While significant speedups have been obtained with single and multiple GPUs on a single workstation, large problems require more resources. Conventional clusters of central processing units (CPUs) are now being augmented with GPUs in each compute-node to tackle large problems.The present research investigates methods of taking advantage of the multilevel parallelism in multi-node, multi-GPU systems to develop scalable simulation science software. The primary application the research develops is a cluster-ready GPU-accelerated Navier-Stokes incompressible flow solver that includes advanced numerical methods, including a geometric multigrid pressure Poisson solver. The research investigates multiple implementations to explore computation / communication overlapping methods. The research explores methods for coarse-grain parallelism, including POSIX threads, MPI, and a hybrid OpenMP-MPI model. The application includes a number of usability features, including periodic VTK (Visualization Toolkit) output, a run-time configuration file, and flexible setup of obstacles to represent urban areas and complex terrain. Numerical features include a variety of time-stepping methods, buoyancy-drivenflow, adaptive time-stepping, various iterative pressure solvers, and a new parallel 3D geometric multigrid solver. At each step, the project examines performance and scalability measures using the Lincoln Tesla cluster at the National Center for Supercomputing Applications (NCSA) and the Longhorn cluster at the Texas Advanced Computing Center (TACC). The results demonstrate that multi-GPU clusters can substantially accelerate computational fluid dynamics simulations.
机译:计算流体力学(CFD)是具有众多应用程序的高性能计算的重要领域。解决热科学和流体科学中的问题需要巨大的计算资源,并且已经成为用于超级计算机和大型集群的主要应用之一。具有多核体系结构的现代图形处理单元(GPU)已经成为通用并行计算平台,可以极大地加速仿真科学的应用。虽然在单个工作站上使用单个和多个GPU已获得了显着的加速,但是较大的问题需要更多的资源。现在,在每个计算节点中都使用GPU扩展了常规的中央处理器(CPU)集群,以解决大型问题。本研究调查了利用多节点,多GPU系统中的多级并行性来开发可扩展仿真的方法。科学软件。研究开发的主要应用是集群就绪的GPU加速的Navier-Stokes不可压缩流量求解器,该求解器包括高级的数值方法,包括几何多网格压力泊松求解器。该研究调查了多种实现方式,以探索计算/通信重叠方法。该研究探索了粗粒度并行性的方法,包括POSIX线程,MPI和混合OpenMP-MPI模型。该应用程序包括许多可用性功能,包括定期的VTK(可视化工具包)输出,运行时配置文件以及可灵活设置的障碍物,以表示城市区域和复杂地形。数值特征包括各种时间步长方法,浮力驱动流,自适应时间步长,各种迭代压力求解器以及新的并行3D几何多重网格求解器。在每个步骤中,该项目都会使用国家超级计算应用中心(NCSA)的Lincoln Tesla群集和德克萨斯高级计算中心(TACC)的Longhorn群集来检查性能和可伸缩性措施。结果表明,多GPU集群可以大大加速计算流体动力学仿真。

著录项

  • 作者

    Jacobsen Dana A.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号