首页> 外文OA文献 >Walk-Run Transition Speed and the Relevance of Loading, Muscular Fatigue, and Human Kinematics: A Comparison of Human Gait Patterns
【2h】

Walk-Run Transition Speed and the Relevance of Loading, Muscular Fatigue, and Human Kinematics: A Comparison of Human Gait Patterns

机译:步行过渡速度与负重,肌肉疲劳和人体运动学的相关性:人体步态模式的比较

摘要

INTRODUCTION: The walk-to-run transition (WRT) typically occurs at a preferred transition speed (PTS) of 1.9-2.1ms-1. Previous research has focused on potential triggers for this transition such as leg length, muscular fatigue, loading rates (LR), and vertical ground reaction forces (VGRFs). Rather than focus on mechanisms responsible for the transition, the purpose of the current study was to determine if basic anthropometrics or gait characteristics are predictive of the WRT. METHODS: Thirty participants were recruited for the current study (n = 13 male, 17 female; n = 11 normal weight, n = 10 overweight, n = 9 obese; age M = 26.3, SD = 5.5 years; height M = 68.8 SD = 3.8 inches; weight M = 182.6, SD = 41.0 lbs; BMI = 27 kg/ms). Participants‟ passive hip and ankle range of motion (ROM) was measured. Next, participants performed a minimum of three overground walking trials at their preferred walking speed (PWS), followed by three WRT trials and four tibialis anterior (TA) strength and endurance tests on a Biodex Isokinetic Machine (Biodex Medical Systems Inc, Shirley NY). TA Strength was the peak torque derived from three maximum voluntary contractions. TA endurance was defined as the graphical value that dropped below 60% of the peak torque for three consecutive trials. Kinematic data were collected with eight Vicon MX series cameras (VICON, Denver, CO, USA), and VGRFs were collected with four force platforms (Kistler, Amherst, MA, USA u26 Advanced Mechanical Technology, Inc., Watertown, MA, USA). The following variables were calculated from the overground trials: active ankle/hip ROM, foot progression, vertical LRs, stride length, stride frequency, VGRFs, and PWS. The PTS was assessed using a motorized treadmill with a velocity increasing by 0.10 mph every 10 s. STATISTICAL ANALYSIS: A Classification and Regression Tree (CART) analysis was used in MATLAB (Mathworks, Natick, MA, USA) to identify and assess variables‟ predictive ability of PTS. A series of t tests were also run on results from the CART. RESULTS u26 CONCLUSION: The CART analysis resulted in a tree with two splits and three terminal nodes. PWS was the primary splitter, creating a division at 1.61 ms-1. A PWS above 1.61 ms-1 resulted in a PTS of 2.28 +/- 0.21 ms-1 for three participants, creating the first terminal node. The second splitter was BMI, subdividing participants at 27 kg/m2, with 27 participants below 27 kg/m2 transitioning at 1.97 +/- 0.17 ms-1 and creating the second terminal node. Twelve participants were categorized above 27 kg/m2 and transitioned at 1.8 +/- 0.13 ms-1, creating the third terminal node. A cross-validation technique generated mean square errors of 0.0734, 0.0565, and 0.0456 for the first, second, and third terminal nodes, respectively. Independent t tests were run on the two BMI groups (u3c 27 kg/m2 and u3e 27 kg/m2) from the secondary split. Passive hip ROM was statistically significant between the participants above and below 27 kg/m2 (p = 0.009 u3c 0.05), at 136 +/- 13° degrees and 161 +/- 27°, respectively. Also, TA endurance (p = 0.043 u3c 0.05) and step width (p = 0.05) were statistically significant, with participants above 27 kg/m2 at TA endurance values of 32 +/- 2.48 repetitions and participants below 27 kg/m2 at 24 +/- 0.71 repetitions. Step width values were 0.14 +/- 0.02 m and 0.11 +/- 0.01 for participants above and below 27 kg/m2, respectively. According to the CART analysis, PWS and BMI were identified as the best predictors for PTS compared to the other measure variables. In general, it is likely that there are differences across multiple variables between these groups, and it is the collective nature of these differences that influence the PTS. Future research on PTS must examine diverse populations in order to gain further insight on transition speed.
机译:简介:步行到跑步转换(WRT)通常以1.9-2.1ms-1的首选转换速度(PTS)进行。以前的研究集中在这种转变的潜在触发因素上,例如腿长,肌肉疲劳,负荷率(LR)和垂直地面反作用力(VGRF)。当前研究的重点不是确定基本的人体测量学或步态特征是否可以预测WRT,而不是专注于负责过渡的机制。方法:本研究招募了30名参与者(n = 13男性,17女性; n = 11正常体重,n = 10超重,n = 9肥胖;年龄M = 26.3,SD = 5.5岁;身高M = 68.8 SD = 3.8英寸;重量M = 182.6,SD = 41.0磅; BMI = 27 kg / ms。测量参与者的被动髋部和踝部运动范围(ROM)。接下来,参加者在他们的首选步行速度(PWS)上进行了至少三场地面步行试验,然后在Biodex等速运动机器(Biodex Medical Systems Inc,Shirley NY)上进行了三项WRT试验和四项胫骨前(TA)强度和耐力测试。 TA强度是源自三个最大自愿收缩的峰值扭矩。 TA耐力定义为连续三个试验下降到峰值扭矩的60%以下的图形值。运动数据是通过八台Vicon MX系列摄像机(美国VICON,丹佛,美国)收集的,而VGRF是通过四个力平台(美国马萨诸塞州的奇石乐,阿默斯特的)收集的。美国先进机械技术有限公司,马萨诸塞州,沃特敦)。从地面试验中计算出以下变量:主动踝/髋关节ROM,足部进展,垂直LR,步幅长度,步幅频率,VGRF和PWS。使用电动跑步机评估PTS,每10秒钟以0.10 mph的速度增加速度。统计分析:在MATLAB(Mathworks,Natick,MA,USA)中使用了分类和回归树(CART)分析来识别和评估PTS变量的预测能力。还对CART的结果进行了一系列的t检验。结果 u26结论:CART分析得出一棵有两个分裂和三个末端节点的树。 PWS是主要的分配器,在1.61 ms-1处进行划分。超过1.61 ms-1的PWS导致三个参与者的PTS为2.28 +/- 0.21 ms-1,从而创建了第一个终端节点。第二个分配器是BMI,以27 kg / m2的速度细分参与者,而27 kg / m2以下的27个参与者以1.97 +/- 0.17 ms-1的速度过渡并创建第二个终端节点。将12位参与者分类为27 kg / m2以上,并以1.8 +/- 0.13 ms-1的速度过渡,从而创建了第三个终端节点。交叉验证技术分别为第一,第二和第三终端节点生成了0.0734、0.0565和0.0456的均方误差。对来自次要分割的两个BMI组(分别为27 kg / m2和27 kg / m2)进行了独立的t检验。参与者之间高于和低于27 kg / m2(p = 0.009 u3c 0.05)的被动髋ROM具有统计学意义(分别为136 +/- 13°度和161 +/- 27°)。此外,TA耐力(p = 0.043 u3c 0.05)和步幅(p = 0.05)在统计学上也很显着,参与者的TA耐力值重复27公斤/平方米时,重复次数超过27 kg / m2,而参与者的TA耐力值低于27公斤/平方米时, 24 +/- 0.71次重复。对于27 kg / m2以下的参与者,步幅值分别为0.14 +/- 0.02 m和0.11 +/- 0.01。根据CART分析,与其他测量变量相比,PWS和BMI被确定为PTS的最佳预测指标。通常,这些组之间的多个变量之间可能存在差异,并且这些差异的集体性质影响了PTS。未来对PTS的研究必须检查不同的人群,以进一步了解过渡速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号