首页> 外文OA文献 >Low Speed Wind Tunnel Testing of Aerofoil Family for Solar Powered Aircrafts
【2h】

Low Speed Wind Tunnel Testing of Aerofoil Family for Solar Powered Aircrafts

机译:太阳能飞机翼型系列的低速风洞测试

摘要

The scope of this report covers the design and testing of a low Reynolds number aerofoil family used for aircrafts propelled by solar energy. The main constrain is the top surface which is defined by the mechanical properties of the solar cells and has a significant effect on the aerodynamics of the whole aerofoil. The aim was to provide reliable data which are in general sparingly available due to the fact that the technology is recent and not widely shared. Another objective was to upgrade the aerodynamic parameters of the aerofoil by using modifications that included gurney flaps, in-plane gurney flaps, trailing edge wedges, and lower surface modifications. Finally, using an iterative process the best configuration could be found and the data were used to improve the low-speed analytical model used to design aerofoils for solar powered models. The reports treats broadly about the experimental technique used to test the aerofoil and problems encountered during low-speed wind tunnel testing. The baseline aerofoil was designed to operate at 400000 to 600000 Reynolds number and generate the coefficient of lift (cL) between 0.7 and 0.9. The plain aerofoil without any modifications reached an aerodynamic efficiency (cL/cD) of 81 at 0.83 cL. It had a negative pitching moment (-0.12 for low Re) which further decreased for high Re (-0.57 at 2000000Re). Surface flow visualisation test revealed that there is a separation bubble at about 2% x/c and that separation occurs at the bottom surface at about 40%x/c. Parts designed to remove the latter phenomenon proved to be aerodynamically inefficient (maximum cL/cD of 71). The best improvement was the in-plane serrated 2% gurney flap, which achieved 140 cL/cD at 0.71 cL. The 0.8% gurney flap also showed an increase in the aerodynamic efficiency (109 cL/cD at 0.81 cL). Due to the time constrains of none of the leading edge devices could be checked. This, apart from further testing, should be the main aim for future research.
机译:本报告的范围涵盖了用于雷诺飞机的低雷诺数机翼家族的设计和测试,该家族用于太阳能飞机。主要限制因素是顶面,顶面由太阳能电池的机械性能决定,并且对整个翼型的空气动力学有重大影响。目的是提供可靠的数据,由于该技术是最新的并且未被广泛共享,因此通常很少提供。另一个目标是通过使用包括格尼襟翼,平面内格尼襟翼,后缘楔形物和下表面修饰的修改来提高机翼的空气动力学参数。最后,使用迭代过程可以找到最佳配置,并使用数据来改进用于设计太阳能模型的机翼的低速分析模型。报告广泛地讨论了用于测试翼型的实验技术以及在低速风洞测试中遇到的问题。基准机翼设计为在400000至600000雷诺数下运行,并产生0.7至0.9的升力系数(cL)。没有任何修改的普通翼型在0.83 cL时达到81的空气动力学效率(cL / cD)。它具有负的俯仰力矩(低Re时为-0.12),高Re时进一步降低(在2000000Re时为-0.57)。表面流可视化测试表明,分离气泡约为2%x / c,分离发生在底部表面,约为40%x / c。设计用于消除后一种现象的零件在空气动力学上效率低下(最大cL / cD为71)。最好的改进是平面锯齿状2%格尼襟翼,在0.71 cL时达到140 cL / cD。 0.8%的格尼襟翼也显示出空气动力学效率的提高(在0.81 cL时为109 cL / cD)。由于时间的限制,无法检查任何前沿设备。除了进一步的测试,这应该是未来研究的主要目标。

著录项

  • 作者

    Jarzabek Artur;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号