首页> 外文OA文献 >Transient solution of compressible viscous flows on high performance computing platforms using finite volume methods
【2h】

Transient solution of compressible viscous flows on high performance computing platforms using finite volume methods

机译:使用有限体积方法的高性能计算平台上可压缩粘性流的瞬态解决方案

摘要

The work presented in this dissertation is the result of u22application-drivenu22 research, with the need to solve complex large-scale engineering problems of significance and relevance to the Army and NASA using state-of-the-art high performance computing (HPC) platforms as its primary motivation. Currently, a majority of commercially available computational fluid dynamics (CFD) simulation algorithms in use by Army and NASA researchers and scientists solve the Navier-Stokes equations using a finite volume method (FVM) framework. Although these codes are extremely mature and take advantage of the numerical schemes complimentary to FVM, many do lack in computational performance for second-order accurate time integration schemes, due to the resulting nonlinear system of equations for large-scale applications, and exhibit poor scalability on a number of supercomputing platforms. Therefore, the purpose of this work is the development of a fully implicit, finite volume solver for large-scale transient compressible viscous flows, optimized for implementation on parallel, vector, and multi-streaming architectures. Optimization will include reduction in memory requirements, increasing computation speed, and obtaining near-linear code scalability. This is accomplished through implementation of innovative Jacobian-free/matrix-free iterative algorithms and code parallelization and vectorization. The Jacobian-free Generalized Minimal RESidual (GMRES) method is used to solve the resulting linear system inside each nonlinear Newton-Raphson iteration. Furthermore, the matrix-free Lower-Upper Symmetric Gauss Seidel (LU-SGS) method is employed as a preconditioning technique to the GMRES solver. Massively parallel implicit computations of both 2-dimensional and 3-dimensional aerodynamic applications using vector/multi-streaming and cluster supercomputers are presented to demonstrate the performance of the present solver in several aspects. These applications show the current implementation to be highly robust and accurate for problems of all flow regimes, subsonic, transonic, and supersonic. Though not originally intended for subsonic flows within the incompressible limit, i.e. flows with Mach numbers of 0.3 or less, results are presented which show that the solution accuracy of this solver is maintained for this class of problem. However, additional cases would need to be studied to determine the full scope of application to subsonic flows. The scalability of the current implementation is shown to be near-linear and super-linear across multiple supercomputing platforms.
机译:本文的工作是 u22应用驱动 u22研究的结果,需要使用最先进的高性能计算解决对陆军和NASA具有重要意义和意义的复杂大型工程问题( HPC)平台为其主要动机。当前,陆军和NASA研究人员和科学家正在使用的大多数市售计算流体动力学(CFD)模拟算法都使用有限体积法(FVM)框架来解决Navier-Stokes方程。尽管这些代码非常成熟,并且利用了FVM补充的数字方案,但是由于生成的用于大型应用的方程组的非线性系统,并且对于二阶精确时间积分方案,许多代码的确缺乏计算性能。在许多超级计算平台上。因此,这项工作的目的是为大规模瞬态可压缩粘性流开发一种完全隐式,有限体积的求解器,并针对并行,矢量和多流体系结构的实现进行了优化。优化将包括减少内存需求,提高计算速度以及获得接近线性的代码可伸缩性。这是通过实现创新的无Jacobian /无矩阵迭代算法以及代码并行化和向量化来实现的。使用无Jacobian的广义最小残差(GMRES)方法来求解每次非线性Newton-Raphson迭代内的结果线性系统。此外,采用无矩阵的上下对称高斯塞德尔(LU-SGS)方法作为GMRES求解器的预处理技术。提出了使用矢量/多流和集群超级计算机对二维和3维空气动力学应用程序进行大规模并行隐式计算的方法,以从多个方面演示本求解器的性能。这些应用表明,当前的实现对于所有亚音速,跨音速和超音速流态的问题都具有很高的鲁棒性和准确性。尽管最初并不是针对不可压缩极限内的亚音速流,即马赫数为0.3或更小的流,但仍显示了结果,表明该求解器的求解精度可解决此类问题。但是,还需要研究其他情况,以确定亚音速流的完整应用范围。当前实现的可扩展性在多个超级计算平台上显示为近线性和超线性。

著录项

  • 作者

    Watts Marvin Dwayne;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号