首页> 外文OA文献 >Pure- and Mixed-Gas Transport Study of Nafion® and Its Fe3+-Substituted Derivative for Membrane-Based Natural Gas Applications
【2h】

Pure- and Mixed-Gas Transport Study of Nafion® and Its Fe3+-Substituted Derivative for Membrane-Based Natural Gas Applications

机译:Nafion®及其Fe3 +取代衍生物在基于膜的天然气应用中的纯气体和混合气体传输研究

摘要

The focus of this research project was to develop a fundamental understanding of the structure-gas transport property relationship in Nafion® to investigate its potential use as a gas separation membrane material for natural gas (NG) applications including carbon dioxide removal from NG, helium recovery, higher-hydrocarbon removal, and nitrogen separation from methane. udSeparation processes account for ~45% of all energy used in chemical plants and petroleum refineries. As the drive for energy savings and sustainability intensifies, more efficient separation technology becomes increasingly important. Saudi Arabia ranks among the world’s top 5 NG producers. Commercial hydrocarbon-based glassy polymers often lose their gas separation properties in the presence of condensable, highly sorbing NG components such as CO2, ethane, propane, n-butane, and C5+ hydrocarbons. This deterioration in gas separation performance results from penetrant-induced dilation and plasticization of the polymer matrix, leading to significant methane and higher hydrocarbon losses. Polymers that have intrinsically low affinity to high-solubility NG components may be less susceptible to plasticization and therefore offer better performance under actual field conditions. By virtue of their strong carbon-fluorine bonds and chemical inertness, perfluoropolymers exhibit very low affinity for hydrocarbon gases. Nafion®, the prototypical perfluoro-sulfonated ionomer, comprising hydrophilic sulfonate groups phase-separated from a hydrophobic perfluorocarbon matrix, has demonstrated interesting permeability and selectivity relationships for gas pairs relevant to NG applications. udGas transport properties of Nafion® indicated gas solubility behavior similar to rubbery polymers but with sieving properties more commonly observed in low free volume glassy polymers. Nafion® demonstrated very low solubility for CO2 and hydrocarbon gases; the trend-line slope of solubility versus penetrant condensability in Nafion® was almost 2.5 times lower than that of typical hydrocarbon polymers, highlighting Nafion’s® effectiveness in resisting high-solubility induced plasticization. Additionally, Nafion® showed extraordinarily high permselectivities between small gases (He, H2, CO2) and large hydrocarbon gases (C1+): He/CH4 = 445, He/C3H8 = 7400, CO2/CH4 = 28, CO2/C3H8 = 460, H2/CH4 = 84 and H2/C3H8 = 1400 owing to its tightly packed chain domains. These high selectivities could potentially be harnessed for helium recovery and CO2 removal in natural gas applications, and hydrogen recovery from refinery gas streams.udPressure-dependent pure- and mixed-gas permeabilities in Nafion® were determined at 35 °C. Nafion® demonstrated two divergent pressure-dependent permeability phenomena: gas compression and plasticization. In pure-gas experiments, the permeability of the permanent gases H2, O2, N2 and CH4 decreased with increasing pressure due to polymer compression, whereas the permeability of the more condensable gases CO2, C2H6 and C3H8 increased dramatically due to solubility-induced plasticization. Binary CO2/CH4 (50:50) mixed-gas experiments showed reduced performance with up to 2-fold increases in CH4 permeability from 0.075 to 0.127 Barrer, and a 45% drop in selectivity (from 26 to 14), between 2 and 36 atm total pressure as a result of CO2-induced plasticization. At a typical NG CO2 partial pressure of 10 atm, Nafion® exhibited 24% lower CO2/CH4 selectivity of 19, with a 4-fold lower CO2 permeability of 1.8 Barrer relative to a commercial cellulose acetate (CA) membrane. Ternary CO2/CH4/C3H8 (30:50:20) experiments quantified the effect of CO2 and C3H8 plasticization. The presence of C3H8 reduced CO2 permeability further due to a competitive sorption effect causing a 31% reduction in CO2/CH4 selectivity, relative to its pure-gas value of 29, at 16 atm total feed pressure. udThe strong cation-exchanging sulfonate groups in Nafion® provided an opportunity to tailor the material properties by incorporating metal ions through a simple ion-exchange process. Nafion® neutralized with Fe3+ was investigated as a potential approach to mitigate CO2-plasticization. XRD results demonstrated an increase in crystallinity from 9% in Nafion H+ to 23% in Nafion Fe3+; however, no significant changes in the average inter chain spacing was observed. Raman and FT-IR technique qualitatively measured the strength of the ionic bond between Fe3+ cation and sulfonate anion. The strong crosslinking effect in Fe3+-cation-exchanged membrane demonstrated substantial increase in permselectivity: N2/CH4 selectivity increased by 39% (from 2.9 to 4.0) and CO2/CH4 selectivity increased by 25% (from 28 to 35). Binary CO2/CH4 (50:50) mixed-gas experiments at total feed pressures up to 30 atm quantified the effect of CO2 plasticization on the CO2/CH4 separation performance. Nafion® Fe3+ demonstrated better resistivity to plasticization enduring approximately 30% CH4 permeability increases from 0.033 Barrer at 2 atm to 0.043 Barrer at 15 atm CO2 partial pressure. At 10 atm CO2 partial pressure, CO2/CH4 selectivity in Nafion® Fe3+ decreased by 28% to 28 from its pure-gas value of 39, which was a significant improvement compared to Nafion® H+ membrane that decreased by 42% to 19 from its pure-gas value of 32.
机译:该研究项目的重点是对Nafion®中的结构-气体传输特性关系有基本的了解,以研究其作为天然气(NG)应用的气体分离膜材料的潜在用途,包括从NG中去除二氧化碳,回收氦气,更高的烃去除率和与甲烷的氮分离。 ud分离过程约占化工厂和炼油厂所用能源的45%。随着节能和可持续性的推动,更高效的分离技术变得越来越重要。沙特阿拉伯跻身全球5大天然气生产国之列。在可冷凝的,高吸附性的NG组分(例如CO2,乙烷,丙烷,正丁烷和C5 +烃)的存在下,基于烃的玻璃状聚合物通常会失去其气体分离性能。气体分离性能的这种下降是由于渗透剂引起的聚合物基体的膨胀和增塑,导致大量的甲烷和更高的烃损失。对高溶解度NG组分本质上亲和力低的聚合物可能不易增塑,因此在实际现场条件下具有更好的性能。由于其强大的碳氟键和化学惰性,全氟聚合物对烃类气体的亲和力很低。 Nafion®是一种典型的全氟磺化离聚物,包含与疏水性全氟化碳基质相分离的亲水性磺酸盐基团,已证明与NG应用相关的气体对具有令人感兴趣的渗透性和选择性关系。 udNafion®的气体传输性能表明其气体溶解性与橡胶状聚合物相似,但具有筛分性能,在低自由体积玻璃状聚合物中更常见。 Nafion®对二氧化碳和烃类气体的溶解度非常低; Nafion®的溶解度与渗透性可冷凝性趋势线斜率几乎比典型的烃类聚合物低2.5倍,突显了Nafion®在抵抗高溶解度诱导的塑化方面的有效性。此外,Nafion®在小气体(He,H2,CO2)和大烃气体(C1 +)之间显示出极高的选择性:He / CH4 = 445,He / C3H8 = 7400,CO2 / CH4 = 28,CO2 / C3H8 = 460,由于其紧密堆积的链结构域,H2 / CH4 = 84,H2 / C3H8 = 1400。这些高选择性可以潜在地用于天然气应用中的氦气回收和CO2去除,以及从炼厂气流中回收氢气。 d在35°C下测定Nafion®中依赖于压力的纯气体和混合气体的渗透率。 Nafion®表现出两种不同的压力相关渗透率现象:气体压缩和塑化。在纯气实验中,由于聚合物压缩,永久性气体H2,O2,N2和CH4的渗透性随压力的增加而降低,而易冷凝的塑化作用使更易冷凝的气体CO2,C2H6和C3H8的渗透性显着增加。二元CO2 / CH4(50:50)混合气体实验显示性能降低,CH4渗透率从0.075升高至0.127 Barrer高达2倍,选择性降低45%(从26降至14),介于2至36之间CO2诱导的塑化的结果是atm总压力。与典型的醋酸纤维素(CA)膜相比,在典型的NG CO2分压为10个大气压的情况下,Nafion®表现出的CO2 / CH4选择性降低了19%,降低了24%,CO2渗透率降低了4倍,为1.8 Barrer。三元CO2 / CH4 / C3H8(30:50:20)实验量化了CO2和C3H8塑化的影响。 C3H8的存在进一步降低了CO2的渗透性,这是由于竞争性吸附作用导致在16 atm总进料压力下,相对于其纯气体值为29,CO2 / CH4选择性降低了31%。 udNafion®中强大的阳离子交换磺酸盐基团为通过简单的离子交换过程结合金属离子来调整材料性能提供了机会。研究了用Fe3 +中和的Nafion®作为减轻CO2增塑的潜在方法。 XRD结果表明,结晶度从Nafion H +中的9%增加到Nafion Fe3 +中的23%。然而,没有观察到平均链间间距的显着变化。拉曼光谱和FT-IR技术定性地测量了Fe3 +阳离子与磺酸根阴离子之间的离子键强度。 Fe3 +-阳离子交换膜中强大的交联作用表明其渗透选择性大大提高:N2 / CH4选择性提高了39%(从2.9到4.0),而CO2 / CH4选择性提高了25%(从28到35)。在总进料压力高达30 atm的二元CO2 / CH4(50:50)混合气体实验中,量化了CO2增塑对CO2 / CH4分离性能的影响。 Nafion®Fe3 +表现出更好的抗塑化性,可承受大约30%的CH4渗透率,从2 atm的0.033 Barrer增加到15 atm CO2分压的0.043 Barrer。在10atm的CO2分压下,Nafion®Fe3 +中的CO2 / CH4选择性从其纯气值39降低了28%,降至28,这与Nafion®H +膜从其纯气体值降低42%,至19相比是一个重大改进。纯气体值为32。

著录项

  • 作者

    Mukaddam Mohsin A.;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号