首页> 外文OA文献 >Time Domain Surface Integral Equation Solvers for Quantum Corrected Electromagnetic Analysis of Plasmonic Nanostructures
【2h】

Time Domain Surface Integral Equation Solvers for Quantum Corrected Electromagnetic Analysis of Plasmonic Nanostructures

机译:时域表面积分方程求解器用于等离激元纳米结构的量子校正电磁分析

摘要

Plasmonic structures are utilized in many applications ranging from bio-medicineudto solar energy generation and transfer. Numerical schemes capable of solving equations of classical electrodynamics have been the method of choice for characterizing scattering properties of such structures. However, as dimensions of these plasmonic structures reduce to nanometer scale, quantum mechanical effects start to appear. These effects cannot be accurately modeled by available classical numerical methods.udOne of these quantum effects is the tunneling, which is observed when two structuresudare located within a sub-nanometer distance of each other. At these small distancesudelectrons “jump" from one structure to another and introduce a path for electric currentudto flow. Classical equations of electrodynamics and the schemes used for solvingudthem do not account for this additional current path. This limitation can be liftedudby introducing an auxiliary tunnel with material properties obtained using quantumudmodels and applying a classical solver to the structures connected by this auxiliaryudtunnel. Early work on this topic focused on quantum models that are generated usinguda simple one-dimensional wave function to find the tunneling probability and assumeuda simple Drude model for the permittivity of the tunnel. These tunnel models areudthen used together with a classical frequency domain solver.udIn this thesis, a time domain surface integral equation solver for quantum correctedudanalysis of transient plasmonic interactions is proposed. This solver has severaludadvantages: (i) As opposed to frequency domain solvers, it provides results at a broad band of frequencies with a single simulation. (ii) As opposed to differentialudequation solvers, it only discretizes surfaces (reducing number of unknowns), enforcesudthe radiation condition implicitly (increasing the accuracy), and allows for time stepudselection independent of spatial discretization (increasing efficiency). The quantumudmodel of the tunnel is obtained using density functional theory (DFT) computations,udwhich account for the atomic structure of materials. Accuracy and applicability ofudthis (quantum corrected) time domain surface integral equation solver will be shownudby numerical examples.
机译:在生物医学 udto到太阳能的产生和转移等许多应用中,均采用了等离子结构。能够求解经典电动力学方程的数值方案已成为表征此类结构散射特性的一种选择方法。然而,随着这些等离子体结构的尺寸减小至纳米级,量子力学效应开始出现。这些效应无法通过可用的经典数值方法精确地建模。 ud这些量子效应之一是隧道效应,当两个结构相互之间位于亚纳米距离之内时,就会观察到这种效应。在这样小的距离下, ud电子从一个结构“跳”到另一个结构,并引入了电流 udto流动的路径,经典的电动力学方程式和用于求解 udthem的方案并没有解决这个额外的电流路径。通过引入具有通过量子 udmodel获得的材料属性的辅助隧道并将经典求解器应用于由该辅助 udtunnel连接的结构来提升 ud。此主题的早期工作集中于使用 uda简单一维波生成的量子模型函数找到隧道概率并假设隧道的介电常数采用简单的Drude模型,然后将这些隧道模型与经典频域求解器一起使用。本文为量子校正提供了时域表面积分方程求解器提出了瞬态等离激元相互作用的分析方法,它具有以下几个优点:(i)与频域求解相反rs,它通过一次模拟就可以在很宽的频率范围内提供结果。 (ii)与微分不等式求解器相反,它仅离散化表面(减少未知数),隐式强制不采用辐射条件(提高精度),并且允许与空间离散化无关的时间步长不选择(提高效率)。隧道的量子 udmodel是使用密度泛函理论(DFT)计算获得的,其计算了材料的原子结构。数值示例将显示(此量子校正)时域表面积分方程求解器的准确性和适用性。

著录项

  • 作者

    Uysal Ismail Enes;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号