首页> 外文OA文献 >Dynamique évolutive de Ralstonia solanacearum en réponse aux pressions de sélection de l'aubergine résistante : approche populationnelle, de génétique évolutive et fonctionnelle de la durabilité de la résistance
【2h】

Dynamique évolutive de Ralstonia solanacearum en réponse aux pressions de sélection de l'aubergine résistante : approche populationnelle, de génétique évolutive et fonctionnelle de la durabilité de la résistance

机译:青枯雷尔氏菌对抗性茄子选择压力的进化动力学:种群方法,抗性耐久性的进化和功能遗传学

摘要

Ralstonia Solanacearum is a soilborn beta-proteobacterium responsible of bacterial wilt on Solanaceaous crops. This bacterium is considered as one of the most harmful plant disease worldwide. This bacterium possesses the ability to infect more than 250 different species, including crops with major economic importance (tomato, potato, tobacco, eucalyptus…). R. solanacearum is divided into four phylotypes originated from different areas: I (Asian), IIA and IIB (American), III (African), IV (Indonesian). Among these phylotype, phylotype I is currently in demographic expansion, is highly recombinogenic and has a wide hosts range. Thus, altogether, these characteristics demonstrated that this phylotype has a high evolutionary potential (sensu McDonald and Linde, 2002). In order to control this bacterium, genetic plant resistance seems to be the most promising method. This method consists in using cultivars with different source of resistance such as resistance genes and/or resistant QTLs. The AG91-25 (E6), an eggplant cultivar possessing a major resistance gene (ERs1), is capable to control some of phylotype I strains of R. solanacearum. However, in order to optimize the management of this resistance and to avoid its fast breakdown, we need to deeply investigate the durability of this resistant gene. Durability can be estimated by studying the evolutionary potential of our pathogen faced to E6 source of resistance and by understanding the molecular mechanisms underlying the interaction between the host (R gene) and its pathogene (Type III Effector – T3E). In order to study R. solanacearum evolutionary dynamics under selective pressure from E6 resistant cultivar, we set up an experimental evolution trial in the field. This trial consisted of three couples of resistant (E6) and susceptible eggplants (E8) microplots, implanted twice a year during three years, hence consisting of 5 cycles. A Multi-Locus VNTR Analysis (MLVA) scheme, consisting of 8 minisatellite loci, was developed in order to characterize the strains extracted from these crop cycles. These VNTRs were specific to R. solanacearum phylotype I strains, they were highly polymorphic and discriminatory at different scale: globally, regionally and locally.Our results showed no breakdown of E6 resistance by R. solanacearum populations, which confirms that this resistance is durable. It seemed that this cultivar reduced the soil bacterial population, preventing bacterial population to infest the resistant host. At the same time, 100% of the E8 plants have died, starting at cycle 2. Bacterial wilt seemed to spread with a “plant-to-plant” dynamics within each microplot. Genetic diversity reduction was also observed during the successive cycle of susceptible eggplant, associated with the increase of frequency of two main haplotypes. However, we failed to identify a clear genetic structuration, neither at the plot scale nor at the microplot scale. Nevertheless, isolation-by-distance data seemed to show that a spatial structure is currently establishing. Altogether, our results suggested that our plot populations appeared to have a clonal epidemic structure.We also looked into 10 T3Es' involvement in the interaction between R. solanacearum and the resistant eggplant (E6). Their distribution was completely different within a collection of phylogenetically diverse strains (91 strains): ripAJ and ripE1 are the most shared T3Es whereas ripP1 and ripP2 were the less common T3E whithin our collection of strains. Some T3Es showed few (ripAJ) or no length polymorphism at all (ripE1 and ripP2) whereas some other (ripAU) are extremely polymorphic. Nevertheless, the T3E effector repertoire did not seemed to be correlated to a specific phenotype on E6 eggplant. Its recognition by E6 seemed to occur in the hypocotyle region rather than in the mesophyll, highlighting a possible organ-specificity of the interaction between ERs1 and ripAX2.
机译:Ralstonia Solanacearum是土壤β-变形杆菌,负责茄科作物上的细菌枯萎。这种细菌被认为是世界上最有害的植物病之一。这种细菌具有感染250多种不同物种的能力,包括具有重要经济意义的农作物(番茄,马铃薯,烟草,桉树……)。青枯菌被分为来自不同地区的四种系统型:I(亚洲),IIA和IIB(美国),III(非洲),IV(印度尼西亚)。在这些系统型中,系统型I目前正在人口膨胀中,具有高度重组性,并且具有广泛的宿主范围。因此,这些特征总共表明该系统型具有高度的进化潜力(sensu McDonald and Linde,2002)。为了控制这种细菌,遗传植物抗性似乎是最有前途的方法。该方法包括使用具有不同抗性来源的品种,例如抗性基因和/或抗性QTL。具有主要抗性基因(ERs1)的茄子品种AG91-25(E6)能够控制茄形红斑病菌的某些I型系。然而,为了优化对该抗性的管理并避免其快速击穿,我们需要深入研究该抗性基因的持久性。可以通过研究我们的病原体面对E6抗药性来源的进化潜能以及了解宿主(R基因)与其病原体(III型效应物-T3E)之间相互作用的分子机制来评估耐久性。为了研究在选择性压力下来自E6抗性品种的青枯菌的进化动力学,我们建立了该领域的实验进化试验。该试验由三对抗性(E6)和易感茄子(E8)微样组成,三年内每年植入两次,因此分为5个周期。为了表征从这些作物周期中提取的菌株,开发了由8个小卫星基因座组成的多基因座VNTR分析(MLVA)方案。这些VNTRs特异于青枯菌系统型I菌株,在全球,区域和局部不同规模上具有高度多态性和歧视性。看来该品种减少了土壤细菌种群,阻止了细菌种群侵染抗性宿主。同时,从第2个周期开始,100%的E8植物已经死亡。在每个微区中,细菌的枯萎似乎随着“植物到植物”的动态传播。在易感茄子的连续周期中也观察到遗传多样性降低,这与两种主要单倍型频率的增加有关。但是,无论是在样地规模还是在微样规模,我们都未能鉴定出清晰的遗传结构。但是,按距离隔离的数据似乎表明当前正在建立空间结构。总的来说,我们的研究结果表明我们的样地种群似乎具有克隆流行结构。我们还调查了10个T3E参与青枯菌与抗性茄子(E6)之间的相互作用。在种类繁多的菌株(91个菌株)中,它们的分布完全不同:ripAJ和ripE1是最共享的T3E,而ripP1和ripP2是在我们的菌株集合中不太常见的T3E。一些T3E几乎没有(ripAJ)或没有长度多态性(ripE1和ripP2),而另一些(ripAU)则极度多态。然而,T3E效应子库似乎与E6茄子的特定表型无关。 E6对其的识别似乎发生在次叶区域而不是叶肉中,这突显了ERs1和ripAX2之间相互作用的可能的器官特异性。

著录项

  • 作者

    Guinard Jérémy;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号