首页> 外文OA文献 >Modélisation de la composition isotopique des cernes d'arbres (13C et 18O) et des transferts de COS entre l'atmosphère et la biosphère continentale pour quantifier les flux bruts de carbone
【2h】

Modélisation de la composition isotopique des cernes d'arbres (13C et 18O) et des transferts de COS entre l'atmosphère et la biosphère continentale pour quantifier les flux bruts de carbone

机译:模拟树木年轮(13C和18O)的同位素组成以及大气与大陆生物圈之间的COS转移,以量化总碳通量

摘要

In the context of global climate change, the behavior of the terrestrial biosphere can be durably affected by the increased frequency and intensity of extreme climatic events, which can decrease the photosynthetic assimilation of carbon and/or increase the respiration rate of the ecosystems. Therefore, quantifying the carbon storage capacity of the ecosystems and predicting their sensitivity to climate changes strongly rely on our capacity to separately estimate the photosynthesis and respiration rates at different scales. The gross primary productivity (GPP) is however not directly measurable. Indirect approaches have been proposed to estimate the biospheric gross fluxes (GPP and respiration), combining for instance stable isotopologues of CO2 (13C and 18O), and, more recently, the measure of carbonyl sulfide (COS) concentrations in the atmosphere. In this context, my PhD work followed two complementary approaches. In the first approach, isotopic measurements and tree-ring widths were used, because both of them are linked to the photosynthetic activity. The inter-annual variations of the photosynthetic fluxes simulated with the ORCHIDEE continental biosphere model were evaluated and compared with in situ measurements. The second approach consisted in using atmospheric measurements of OCS concentrations and in exploring their potential to constrain the current estimates of the GPP in dynamic global vegetation models (DGVM), by (1) establishing a new global budget of sources and sinks of this gas, (2) optimizing the source and sink terms of this cycle and (3) estimating the potential of this new tracer to validate/invalidate the simulated GPP when using current DGVMs.
机译:在全球气候变化的背景下,极端气候事件的频率和强度增加会持久地影响陆地生物圈的行为,这会减少碳的光合作用和/或增加生态系统的呼吸速率。因此,量化生态系统的碳储存能力并预测其对气候变化的敏感性在很大程度上取决于我们有能力分别估算不同规模的光合作用和呼吸速率。但是,总初级生产力(GPP)是无法直接测量的。已经提出了间接方法来估计生物圈总通量(GPP和呼吸作用),例如结合稳定的CO2同位素(13C和18O),以及最近对大气中羰基硫(COS)浓度的测量。在这种情况下,我的博士工作遵循两种互补的方法。在第一种方法中,使用了同位素测量和树环宽度,因为它们都与光合作用活动相关。评估了用ORCHIDEE大陆生物圈模型模拟的光合通量的年际变化,并将其与原位测量进行了比较。第二种方法包括使用大气中OCS浓度的测量值,并探索它们的潜力,以通过以下方式限制动态全球植被模型(DGVM)中GPP的当前估算值:(1)建立一种新的全球这种气体源和汇的预算, (2)优化此周期的源项和宿项,(3)估计使用当前的DGVM时此新示踪剂验证/失效模拟GPP的潜力。

著录项

  • 作者

    Launois Thomas;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号