首页> 外文OA文献 >Non-Forster distance and orientation dependence of energy transfer and applications of fluorescence resonance energy transfer to polymers and nanoparticles: How accurate is the spectroscopic ruler with $1/R^6$ rule?
【2h】

Non-Forster distance and orientation dependence of energy transfer and applications of fluorescence resonance energy transfer to polymers and nanoparticles: How accurate is the spectroscopic ruler with $1/R^6$ rule?

机译:能量转移的非福斯特距离和取向依赖性以及荧光共振能量转移到聚合物和纳米粒子的应用:带有$ 1 / R ^ 6 $规则的光谱尺的精度如何?

摘要

Fluorescence resonance energy transfer (FRET) is a popular tool to study equilibrium and dynamical properties of polymers and biopolymers in condensed phases and is now being widely used in conjunction with single molecule spectroscopy. The rate of FRET is usually assumed to be given by the Förster expression: $ k_F = k_{rad}(rac {R_F} {R} )^6$ where $k_{rad}$ is the radiative rate (typically less than $10^9 s^{-1}$) and $R_F$ is the well-known Förster radius which is given by the spectral overlap between the fluorescence spectrum of the donor and the absorption spectrum of the acceptor. We first present a critical analysis of the derivation of the above expression and argue why this expression can be of limited validity in many cases. We demonstrate this by explicitly considering a donor–acceptor system, polyfluorene $(PF_6)$ tetraphenylporphyrin (TPP), where their sizes are comparable to the distance separating them. In such cases, one may expect much weaker distance (as $1/R^2$ or even weaker) dependence. Another limitation is that optically dark states can make significant contribution to the energy transfer rate – these contributions are neglected in the Förster expression. Yet another limitation is that Förster, being based on Fermi Golden Rule, neglects vibrational energy relaxation which can be a serious limitation when the rate is in the few picoseconds regime. We have also considered the case of energy transfer from a dye to a nanoparticle. Here we show that the distance dependence can be completely different from Förster and can give rise to $1/R^4$ distance dependence at large separations. We also discuss recent applications of FRET to study biopolymer conformational dynamics and an interesting breakdown of the famous Wilemski–Fixman theory.
机译:荧光共振能量转移(FRET)是研究凝聚相中聚合物和生物聚合物的平衡和动力学性质的流行工具,目前已与单分子光谱法一起广泛使用。通常假定FRET的速率由Förster表达式给出:$ k_F = k_ {rad}( frac {R_F} {R})^ 6 $其中$ k_ {rad} $是辐射速率(通常较小)比$ 10 ^ 9 s ^ {-1} $)和$ R_F $是众所周知的Förster半径,它是由供体的荧光光谱和受体的吸收光谱之间的光谱重叠给出的。我们首先对上述表达式的派生进行批判性分析,并指出为什么在许多情况下该表达式的有效性有限。我们通过明确考虑供体-受体体系聚芴$(PF_6)$四苯基卟啉(TPP)来证明这一点,其尺寸与分隔它们的距离相当。在这种情况下,人们可能期望更弱的距离(如$ 1 / R ^ 2 $甚至更弱)依赖性。另一个局限性是,光学上的暗态可以对能量传输速率做出重大贡献-这些贡献在Förster表达式中被忽略。还有一个限制是,基于费米黄金定律的福斯特(Förster)忽略了振动能量的松弛,当速率处于几皮秒范围内时,这可能是一个严重的限制。我们还考虑了从染料到纳米粒子的能量转移情况。在这里,我们表明距离相关性可以与Förster完全不同,并且可以在大距离处产生$ 1 / R ^ 4 $距离相关性。我们还将讨论FRET在研究生物聚合物构象动力学方面的最新应用以及著名的Wilemski-Fixman理论的有趣分解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号