首页> 外文OA文献 >APPLICATION OF FUZZY LOGIC TO TRAFFIC SIGNAL CONTROL UNDER MIXED TRAFFIC CONDITIONS
【2h】

APPLICATION OF FUZZY LOGIC TO TRAFFIC SIGNAL CONTROL UNDER MIXED TRAFFIC CONDITIONS

机译:混合交通条件下模糊逻辑在交通信号控制中的应用

摘要

Traffic signal control is commonly used at road intersections to minimise vehicular uddelay. Fixed time control shows good results in conditions where there is a little fluctuation in udtraffic demand, however in time-varying traffic fixed time control becomes inflexible and udinefficient. This may produce traffic congestion and lead to increased delays and air pollution. udDemand responsive traffic signal control must be introduced to overcome these problems. udHowever, all the available demand responsive traffic signal control methods such as udVehicle Actuated Controller (VAC), Traffic Optimisation Logic (TOL), Microprocessor udOptimised Vehicle Actuation (MOVA) and Fuzzy Logic Traffic Signal Controllers (FLTSC) have udbeen developed for non-mixed traffic conditions, considering only motor vehicles move in udclearly defined lanes, neglecting motorcycles. These demand responsive traffic signal controls udare not appropriate for the mixed traffic conditions of developing countries such as Indonesia, udwhere the traffic streams consist of different types of vehicle with a wide variation in their udstatic, dynamic and operating characteristics, and with a particularly high proportion (30% - ud70%) of motorcycles. Also there is lack of lane discipline. udThis thesis describes the design and evaluation of an adaptive traffic signal controller based on udfuzzy logic for an isolated four-way intersection with specific reference to mixed traffic in uddeveloping countries, including a high proportion of motorcycles. Four proposed controllers udhave been developed for different schemes. The controllers were designed to be responsive to udreal time traffic demands. The study identifies two traffic parameters as appropriate as input uddata for an adaptive traffic signal controller under mixed traffic conditions such as the proposed udFLTSC: the average occupancy rate (%) and maximum queue length (metres). The literature udstudy suggest that this data should be collected using advances video image processing. The udproposed FLTSC uses maximum queue lengths and average occupancy rates collected during the udprevious cycle to estimate the number of seconds of green time required by each set of signal udgroups during the next cycle. udThe effectiveness of the proposed FLTSC was analysed using the microscopic traffic udsimulation model VISSIM. Prior to doing so, the VISSIM model was calibrated and validated. udFrom the validation process it was apparent that the VISSIM model could be adapted to simulate mixed traffic conditions by use of the Packet approach. In this approach, motorcycles udare modelled as a group of motorcycles. udThe performance of the proposed FLTSC was contrasted with a Fixed Time Controller ud(FTC) for different case studies on a simulated four-way intersection. The FTC is represented by udthe calculation as suggested in the Indonesian Highway Capacity Manual. Separate analysis udusing TRANSYT show that this is a valid assumption to make. The simulation results show that udthe proposed FLTSC is generally better than the FTC in terms of the average delay of vehicles at udan intersection, especially under time-varying traffic. udFurther analysis was carried out to compare the performance of the proposed FLTSC udagainst a Vehicle Actuated Controller (VAC) for different traffic conditions on a simulated four-udway intersection, East-West and North-South without turning movements. In order to analyse udthe performance of VAC, a refined VISSIM model was developed. This used the latest version of udthe VISSIM software and allowed individual vehicles (and particularly motorcycles) to be udmodelled in mixed traffic. udThe phase extension time is one of the most critical parameters to affect the overall udperformance of VAC (Bullen, 1989). To provide a fair comparison of the performance between udthe proposed FLTSC and the VAC, an investigation was carried out to find the most appropriate udextension time for the VAC that was suitable for mixed traffic. The effect of motorcycles to the udperformance of the VAC was also investigated. Two schemes were carried out to observe it, udnamely: Scheme 1 where detector detects all vehicle types (DfT, 2006) and Scheme 2 where uddetector detects all vehicle types, apart from motorcycles. udThe simulation results show that the VAC System D (DfT, 2006) using an extension time udof 1.2 seconds and the VAC Extension Principle (Kell and Fullerton, 1991) with a detector udposition of 30 metres and extension time of 3.0 seconds produced better performance than the udother extension times tested for both schemes in terms of the average delay of vehicles. This is udslightly shorter than current practice in developed countries. udThe simulation results indicate that the performance of the VACs with scheme 1 is udgenerally worse than with scheme 2. The performance of the VACs with scheme 1 against udscheme 2 tended to reduce significantly as the percentage of motorcycles in traffic increased. udThe study compares the effectiveness of FTC, VAC Extension Principle (VAC-EP), VAC System udD (VAC-SD) and proposed FLTSC in various traffic conditions. The simulation results indicate udthat the average delay of the proposed FLTSC is close to the average delay of the FTC when used udin cases with constant traffic flows but sometimes worse. However, in cases of time-varying udtraffic the proposed FLTSC is superior to the FTC. When comparing the simulation results of the udproposed FLTSC, VAC-SD and VAC-EP, again the proposed FLTSC does not improve average uddelay, when traffic flows constant but produces better results in cases of time-varying traffic. ud
机译:通常在道路交叉口使用交通信号控制,以最大程度地减少车辆的延误。固定时间控制在交通需求波动很小的情况下显示出良好的效果,但是在时变交通中,固定时间控制变得不灵活且效率低下。这可能会导致交通拥堵并导致延误和空气污染增加。 ud必须引入需求响应的交通信号控制来克服这些问题。 ud但是,已经开发了所有可用的需求响应交通信号控制方法,如 ud车辆致动控制器(VAC),交通优化逻辑(TOL),微处理器 udOptimized车辆启动(MOVA)和模糊逻辑交通信号控制器(FLTSC)对于非混合交通条件,请考虑仅在明确定义的车道上行驶的车辆,而忽略摩托车。这些要求响应的交通信号控制装置不适合于印度尼西亚等发展中国家的混合交通状况,其中交通流由不同类型的车辆组成,它们的,静态,动态和操作特性差异很大,并且摩托车的比例特别高(30%- ud70%)。另外,缺乏泳道纪律。 ud本文描述了基于 udfuzzy逻辑的自适应交通信号控制器的设计和评估,该逻辑适用于孤立的四向交叉路口,并特别参考了发达国家中的混合交通,其中包括高比例的摩托车。已针对不同的方案开发了四个建议的控制器。这些控制器旨在响应 urealtime流量需求。该研究确定了两种交通参数作为混合交通条件下的自适应交通信号控制器输入uddata的适当条件,例如拟议的udFLTSC:平均占用率(%)和最大队列长度(米)。文献研究表明,应使用高级视频图像处理来收集此数据。提议的FLTSC使用最大的队列长度和在先前的周期中收集的平均占用率来估计下一个周期中每组信号udgroup所需的绿灯时间的秒数。 ud使用微观交通模拟模型VISSIM分析了拟议FLTSC的有效性。在此之前,已对VISSIM模型进行了校准和验证。从验证过程中可以明显看出,可以使用Packet方法将VISSIM模型改编为模拟混合交通状况。在这种方法中,摩托车被建模为一组摩托车。拟议的FLTSC的性能与固定时间控制器ud(FTC)进行了对比,后者适用于模拟四通路口的不同案例研究。 FTC由印尼公路通行能力手册中建议的计算得出。单独的分析使用TRANSYT证明这是一个有效的假设。仿真结果表明,建议的FLTSC在“乌丹”交叉路口的车辆平均延误方面通常优于FTC,尤其是在时变交通情况下。进行了进一步的分析,以比较拟议的FLTSC的性能。在模拟的四向交叉路口(东西向和南北向)无转弯行驶的情况下,针对不同交通条件的车辆致动控制器(VAC)进行了比较。为了分析VAC的性能,开发了改进的VISSIM模型。这使用了VISSIM软件的最新版本,并允许在混合交通中对单个车辆(尤其是摩托车)进行建模。相位延长时间是影响VAC整体性能的最关键参数之一(Bullen,1989)。为了公平地比较建议的FLTSC和VAC的性能,进行了调查以找到最适合混合交通的VAC拉伸时间。还研究了摩托车对VAC性能的影响。实施了两种方案来观察它,即:方案1,其中检测器检测所有车辆类型(DfT,2006年)和方案2,其中uddetector检测除摩托车以外的所有车辆类型。 ud仿真结果表明,VAC System D(DfT,2006年)使用的扩展时间为 udof 1.2秒,并且使用VAC扩展原理(Kell和Fullerton(1991年),检测器的覆盖度为30米,扩展时间为3.0秒,相对于两种方案在车辆平均延迟方面测试的扩展度而言,其性能要更好。这比发达国家目前的做法略短。模拟结果表明,方案1的VAC性能总体上比方案2差。方案1的VAC对方案2的性能往往会随着摩托车交通流量的增加而显着降低。研究比较了FTC,VAC扩展原理(VAC-EP),VAC系统 udD(VAC-SD)和拟议的FLTSC在各种交通条件下的有效性。仿真结果表明,在交通流量恒定但有时更糟的情况下,所提出的FLTSC的平均延迟接近FTC的平均延迟。但是,在时变流量过多的情况下,建议的FLTSC优于FTC。当比较建议的FLTSC,VAC-SD和VAC-EP的仿真结果时,当流量恒定时,建议的FLTSC不会提高平均 uddelay,但在流量随时间变化的情况下会产生更好的结果。 ud

著录项

  • 作者

    Yulianto Budi;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号