首页> 外文OA文献 >Optimal GPS/GALILEO GBAS methodologies with an application to troposphere
【2h】

Optimal GPS/GALILEO GBAS methodologies with an application to troposphere

机译:最优GPS / GALILEO GBAS方法论及其在对流层中的应用

摘要

In the Civil Aviation domain, research activities aim to improve airspace capacity and efficiency whilst meeting stringent safety targets. These goals are met by improving performance of existing services whilst also expanding the services provided through the development of new Navigation Aids. One such developmental axe is the provision of safer, more reliable approach and landing operations in all weather conditions. The Global Navigation Satellite System (GNSS) has been identified as a key technology in providing navigation services to civil aviation users [1] [2] thanks to its global coverage and accuracy. The GNSS concept includes the provision of an integrity monitoring function by an augmentation system to the core constellations. This is needed to meet the required performances which cannot be met by the stand-alone constellations. One of the three augmentation systems developed within civil aviation is the GBAS (Ground Based Augmentation System) and is currently standardized by the ICAO to provide precision approach navigation services down to Cat I using the GPS or GLONASS constellations [3]. Studies on-going with the objective to extend the GBAS concept to support Cat II/III precision approach operations with GPS L1 C/A, however some difficulties have arisen regarding ionospheric monitoring. With the deployment of Galileo and Beidou alongside the modernization of GPS and GLONASS, it is envisaged that the GNSS future will be multi-constellation (MC) and multi-frequency (MF). European research activities have focused on the use of GPS and Galileo. The MC/MF GBAS concept should lead to many improvements such as a better modelling of atmospheric effects but several challenges must be resolved before the potential benefits may be realized. Indeed, this PhD has addressed two key topics relating to GBAS, the provision of corrections data within the MC/MF GBAS concept and the impact of tropospheric biases on both the SC/SF and MC/MF GBAS concepts. Due to the tight constraints on GBAS ground to air communications link, the VDB unit, a novel approach is needed. One of the proposals discussed in the PhD project for an updated GBAS VDB message structure is to separate message types for corrections with different transmission rates. Then, this PhD argues that atmospheric modelling with regards to the troposphere has been neglected in light of the ionospheric monitoring difficulties and must be revisited for both nominal and anomalous scenarios. The thesis focuses on how to compute the worst case differential tropospheric delay offline in order to characterize the threat model before extending previous work on bounding this threat in order to protect the airborne GBAS user. In the scope of MC/MF GBAS development, an alternative approach was needed. Therefore, in this PhD project, Numerical Weather Models (NWMs) are used to assess fully the worst case horizontal component of the troposphere. An innovative worst case horizontal tropospheric gradient search methodology is used to determine the induced ranging biases impacting aircraft performing Cat II/III precision approaches with GBAS. This provides as an output a worst case bias as a function of elevation for two European regions.The vertical component is also modelled by statistical analysis by comparing the truth data to the GBAS standardized model for vertical tropospheric correction up to the height of the aircraft. A model of the total uncorrected differential bias is generated which must be incorporated within the nominal GBAS protection levels. In order to bound the impact of the troposphere on the positioning error and by maintaining the goal of low data transmission, different solutions have been developed which remain conservative by assuming that ranging biases conspire in the worst possible way. Through these techniques, it has been shown that a minimum of 3 parameters may be used to characterize a region’s model.
机译:在民航领域,研究活动旨在提高空域容量和效率,同时满足严格的安全目标。这些目标可以通过改善现有服务的性能来实现,同时还可以通过开发新的导航辅助装置来扩展所提供的服务。一种这样的发展斧头是在所有天气条件下提供更安全,更可靠的进近和着陆操作。全球导航卫星系统(GNSS)由于其全球覆盖范围和准确性而被公认为是向民航用户提供导航服务的关键技术[1] [2]。 GNSS概念包括由增强系统向核心星座提供完整性监控功能。这需要满足独立星座无法满足的所需性能。民航业开发的三个增强系统之一是GBAS(基于地面的增强系统),目前已由ICAO标准化,可使用GPS或GLONASS星座提供精确的进近导航服务,直至Cat I [3]。正在进行旨在扩展GBAS概念以支持GPS L1 C / A的Cat II / III类精密进近操作的研究,但是在电离层监测方面出现了一些困难。随着伽利略和北斗的部署以及GPS和GLONASS的现代化,可以预见,GNSS的未来将是多星座(MC)和多频(MF)。欧洲的研究活动集中在GPS和Galileo的使用上。 MC / MF GBAS概念应该带来许多改进,例如对大气影响进行更好的建模,但是在实现潜在利益之前,必须解决一些挑战。实际上,该博士已经解决了与GBAS相关的两个关键主题,即在MC / MF GBAS概念内提供校正数据,以及对流层偏置对SC / SF和MC / MF GBAS概念的影响。由于GBAS地对空通信链路VDB单元受到严格限制,因此需要一种新颖的方法。在博士项目中讨论的关于更新的GBAS VDB消息结构的建议之一是分离消息类型,以使用不同的传输速率进行更正。然后,该博士认为,鉴于电离层的监测困难,对流层的大气建模已被忽略,对于名义和异常情况都必须重新考虑。本文重点讨论了如何离线计算最坏情况的对流层差分时延,以描述威胁模型,然后再扩展之前的边界界定工作,以保护机载GBAS用户。在MC / MF GBAS开发范围内,需要一种替代方法。因此,在这个博士项目中,数值天气模型(NWM)用于全面评估对流层的最坏情况水平分量。一种创新的最坏情况水平对流层梯度搜索方法可用于确定对使用GBAS执行Cat II / III精度进近的飞机产生影响的测距偏差。这为两个欧洲地区提供了作为海拔高度函数的最坏情况下的偏差输出。垂直分量还通过统计分析来建模,方法是将真值数据与GBAS标准化模型进行比较,以进行垂直对流层校正直至飞机高度。生成了一个总的未校正差分偏置模型,该模型必须纳入标称GBAS保护级别内。为了限制对流层对定位误差的影响并通过保持低数据传输的目标,已开发出不同的解决方案,这些解决方案通过假设测距偏差以最坏的可能合谋而保持保守。通过这些技术,已证明至少可以使用3个参数来表征区域模型。

著录项

  • 作者

    Guilbert Alize;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号