首页> 外文OA文献 >Study of a high-pressure uniaxial thermocompression process for the molding of natural lignocellulosic materials
【2h】

Study of a high-pressure uniaxial thermocompression process for the molding of natural lignocellulosic materials

机译:高压单轴热压成型天然木质纤维素材料的研究

摘要

This thesis work objective is the study of a novel forming process for the production of agromaterials: a high-pressure uniaxial thermocompression process for the molding of natural lignocellulosic materials, without pretreatment or binders. The first chapter is the state-of-the-art of « self-bonded » lignocellulosic materials as defined in the domain of wood-based panels. It comprises the study of the effect of the operating conditions even though reported pressures are much lower than the intended pressure in our study: the influence of the biomass type, the use of steam pretreatment and the fibers modification during processing. Data from closely related scientific domains are compared in order to discuss about the possible mechanisms of cohesion. A short technological part describes the process and its evolution over the prototyping steps in this work. Some limits are reported in particular about the major influence of the technological capability on the exploratory field and on the results. At first, cellulose is chosen as a model polymer. A method is developed in order to study the influence of the operating conditions on the compacted materials’ mechanical properties. Pressure has a limited effect above 100 MPa, the molding time has no significant effect (it can be reduced to 3 seconds) and a minimum of moisture content is necessary. Temperature is the most impacting factor and is correlated with higher mechanical properties, higher density and lower moisture uptake of the specimens as well as to a significant decrease of interparticular space on the surface. At 8% moisture and 200°C, steam accumulates in the core of the material which leads to the delamination of the samples. The moisture / temperature couple (0-8% and 175-250°C) is thus specifically studied; above 225°C the effect of delamination is decreased. The best mechanical properties are obtained at 2% and 250°C: 31/70 MPa of stress at break in tensile/bending and 2 and 8 GPa for the corresponding moduli. The structure / property relationship is discussed thanks to the data obtained. Water has a key role yet contradictory because of its plasticizing effect and higher thermal conductivity in one hand, and the accumulation of steam which hinders the cohesion at the core and leads to delamination. The addition of fatty compounds to cellulose increases the water resistance of the specimens: 5% of stearic acid and magnesium stearate increased the water drop penetration time and its surface contact angle. The grafting of octanoïc acid (and its anhydride equivalent) during the molding process is studied and confirmed by CPG analysis with a maximum DS value of 3.9 10-2 for the acid and 4.8 10-2 for the anhydride. Pretreatments (solvent exchange and high pressure homogenizer) are necessary in order to increase the cellulose / grafts contact and to obtain a significant grafting yield. The grafting yield is correlated with a decrease of the bending properties of the grafted materials. The process is then applied to a variety of raw plant materials (crop residues or byproducts of a first processing) with the aim of establishing a link between the physico-chemical properties of the plant materials and the compacted materials’ mechanical properties. Despite a mediocre statistical significance and lower properties of the materials compared to cellulose, the link is confirmed between high cellulose and lignin contents, low extractives, hemicelluloses, ashes and protein contents and high mechanical properties and water resistance. In response to the limits of this technique, an alternative process of transfer molding is proposed, together with preliminary tests that confirm numerous prospects.
机译:本论文的工作目标是研究一种新型的农用材料生产成型工艺:一种高压单轴热压工艺,用于成型天然木质纤维素材料,无需进行预处理或使用粘合剂。第一章是木质板领域中定义的“自粘合”木质纤维素材料的最新技术。它包括对操作条件的影响的研究,即使所报告的压力远低于我们研究中的预期压力:生物量类型的影响,蒸汽预处理的使用以及加工过程中纤维的改性。比较了来自紧密相关科学领域的数据,以讨论凝聚力的可能机制。简短的技术部分描述了此过程及其在原型步骤中的演变。报告了一些限制,特别是关于技术能力对勘探领域和结果的主要影响。首先,选择纤维素作为模型聚合物。为了研究操作条件对压实材料的机械性能的影响,开发了一种方法。压力在100 MPa以上时有有限的影响,成型时间没有明显的影响(可以减少到3秒),并且水分含量必须最小。温度是影响最大的因素,并且与更高的机械性能,更高的密度和更低的样品吸湿率以及表面上颗粒间空间的显着减少有关。在8%的湿度和200°C的温度下,蒸汽积聚在材料的芯中,从而导致样品分层。因此,专门研究了湿度/温度对(0-8%和175-250°C)。高于225°C,分层的效果会降低。在2%和250°C下可获得最佳的机械性能:拉伸/弯曲断裂应力为31/70 MPa,相应的模量为2和8 GPa。由于获得了数据,因此讨论了结构/属性关系。水一方面具有增塑作用和较高的热导率,另一方面又起着矛盾的作用,因为水的聚积会阻碍芯部的凝聚力并导致分层。向纤维素中添加脂肪族化合物可提高样品的耐水性:5%的硬脂酸和硬脂酸镁可增加水滴的渗透时间及其表面接触角。研究了成型过程中辛酸(及其酸酐当量)的接枝情况,并通过CPG分析进行了证实,该酸的最大DS值为3.9 10-2,酸酐的最大DS值为4.8 10-2。为了增加纤维素/接枝的接触并获得显着的接枝产率,必须进行预处理(溶剂交换和高压均化器)。接枝产率与接枝材料的弯曲性能的降低相关。然后将该工艺应用于各种原始植物材料(初次加工的作物残渣或副产品),目的是在植物材料的物理化学性质与压实材料的机械性质之间建立联系。尽管与纤维素相比,该材料具有中等的统计意义和较低的性能,但在高纤维素和木质素含量,低萃取物,半纤维素,灰分和蛋白质含量以及高机械性能和耐水性之间建立了联系。响应于该技术的局限性,提出了一种替代的传递模塑工艺,以及可以证实许多前景的初步测试。

著录项

  • 作者

    Pintiaux Thibaud;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号