首页> 外文OA文献 >An approximate method for solving rarefied and transitional flows using TDEFM with isotropic mesh adaptation
【2h】

An approximate method for solving rarefied and transitional flows using TDEFM with isotropic mesh adaptation

机译:具有各向同性网格自适应的TDEFM解决稀疏流和过渡流的近似方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

DSMC [1] can become increasingly expensive when extended to the near-continuum regime. Because of the statistical nature of the results, long run times are required to build up samples of simulator particles large enough to reduce the statistical scatter to acceptable levels. Here we adapt a kinetic theory based flux method to produce a quick approximate solver for transition and near-continuum flows. The results have no statistical scatter. The CPU times are similar to those of traditional continuum (Navier-Stokes or Euler) solvers. The True Direction Equilibrium Flux Method (TDEFM) [2, 3] is a generalisation of Pullinu27s kinetic theory based EFM [4]. TDEFM can transfer fluxes of mass, momentum and energy in physically realistic directions from any source cell to any destination cell, even if the cells do not share an interface. TDEFM, as an Euler solver, has been shown to provide good results on a Cartesian grid for flows where standard continuum methods produce unphysical asymmetries apparently because the continuum fluxes are constrained (in one time step) to flow in the grid coordinate directions rather than the correct physical direction. [2, 3] The new method for rarefied flow does not try to produce the correct velocity distribution function, but does ensure that mass, momentum and energy are transported within the flow over the physically correct distances between “pseudo-collisions.” To ensure this, (1) the time step is restricted so that mass, momentum and energy are exchanged between contiguous cells only in one time step, and (2) the cells sizes are adapted, as steady state is approached, to be approximately equal to the local mean free path. The results for Mach 5 flow over a flat plate for varying Knudsen numbers show an average difference (compared to DSMC) in the X-velocity profile near the surface of the plate of less than 6 percent. TDEFM, employing adaptive mesh refinement, required less than 9 percent of the computational time required by DSMC for the same flow. Thus the approximate method could be useful for quick “first-estimate” solutions of otherwise time consuming design problems. ©2009 American Institute of Physics
机译:如果将DSMC [1]扩展到近连续状态,则会变得越来越昂贵。由于结果的统计性质,需要很长的时间才能建立足够大的模拟器粒子样本,以将统计散度降低到可接受的水平。在这里,我们采用基于动力学理论的通量方法来为过渡流和近连续流产生快速近似求解器。结果没有统计分散。 CPU时间类似于传统的连续体(Navier-Stokes或Euler)求解器。真实方向平衡通量法(TDEFM)[2,3]是普林斯动力学理论基于EFM的推广[4]。 TDEFM可以在物理现实方向上将质量,动量和能量的通量从任何源单元传输到任何目标单元,即使这些单元不共享接口也是如此。 TDEFM作为一种Euler求解器,已经证明在笛卡尔网格上为标准连续介质方法产生非物理不对称性的流提供了良好的结果,这显然是因为连续通量被约束(在一时间步长)沿网格坐标方向而不是网格坐标方向流动。正确的身体方向。 [2,3]稀疏流的新方法不会尝试产生正确的速度分布函数,但可以确保质量,动量和能量在“伪碰撞”之间的物理正确距离上在流中传输。为确保这一点,(1)限制时间步长,以便仅在一个时间步长之间在相邻单元之间交换质量,动量和能量;(2)在接近稳态时,将单元大小调整为近似相等到本地平均自由路径。对于变化的Knudsen数,在平板上流动的5马赫数的结果表明,靠近板表面的X速度分布的平均差异(与DSMC相比)小于6%。使用自适应网格细化的TDEFM,对于相同的流程,所需的时间不到DSMC的9%。因此,近似方法对于否则耗时的设计问题的快速“首次估计”解决方案可能很有用。 ©2009美国物理研究所

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号