首页> 外文OA文献 >Forest Refine, 2012-2014 : efficient forest biomass supply chain management for biorefineries : synthesis report
【2h】

Forest Refine, 2012-2014 : efficient forest biomass supply chain management for biorefineries : synthesis report

机译:2012-2014年森林精炼:生物精炼厂有效的森林生物质供应链管理:综合报告

摘要

Current biorefining activities and plans for new biorefineries in Sweden and Finland are largelyudconcentrated on the production of liquid biofuels for the transport sector. However, the pulp industryud(and other players) are also developing new biorefinery processes, for example to: convert pulp fibersudinto new types of materials and products (e.g. textiles, diverse composites and nanocellulose); upgradeudresidue streams to deliver marketable products (e.g. via black liquor gasification, lignin extraction,udfermentation of hemicellulose, and gasification or hydrolysis of fibre sludge); implement processes for coproductionudof process steams and marketable products (e.g. gasification and pyrolysis); and extractuduseful substances from incoming raw material (e.g. pre-extraction of hemicellulose). Thus, for exampleudtall oil from pulp mills is increasingly being used as feedstock for both motor fuels and various chemicals.udThe raw material requirements of future biorefineries (in terms of abundance, quality and timing ofudsupplies) may radically differ from those of traditional forest industries and energy plants, demandingudequally radical adjustment of the supply chains. Thus, it is vitally important to harmonize research anduddevelopment goals in parts of northern Sweden and Finland in the Botnia-Atlantica (BA) region withudthe development of efficient and sustainable supply chains for forest raw material. Hence, the overalludobjective of this project was to acquire knowledge of ways to optimize biomass supplies for refineries inudthe BA region from existing, planned or potential procurement areas.udAn overall conclusion from the studies is that supply costs can be significantly reduced by integratingudsupplies of pulpwood and residual assortments rather than providing them via separate supply chains.udHowever, assessing the costs and benefits of possible systems is not straightforward as they areudinfluenced by complex interactions between supplies of multiple feedstock assortments and demandsudfrom multiple users. Furthermore, the costs of separating stemwood from residues at a later point in theudchain may reduce or eliminate the benefits of integrated harvest. Hence, the advantages would beudgreatest for applications in which there is little gain from separating these assortments. Availableudamounts of feedstock could also be increased by pre-treatment operations, which could make previouslyudnon-viable assortments available. However, any cost reductions thus achieved from increasing suppliesudshould be weighed against the additional pre-treatment costs. Overall, the options studied in the projectudindicate that new practices could potentially reduce supply costs by around 10%, compared to currentudbest practices, under certain conditions.udAnother critical factor is to ensure that supplies of biomasses with various qualities can be rapidlyudadjusted and adapted to meet shifts (potentially unpredictable) in demand. Terminals can play a keyudrole in the provision of such flexibility. Current terminals are mainly used as transition points, whereudlittle upgrading is done apart from comminution. Since raw forest biomass cannot be transported longuddistances, due to its relatively low value, robust value-upgrading at terminals closer to terminals beforeudlong distance transportation is likely to be necessary. Such terminals must be quite sophisticated in orderudto serve as flexible/semi-mobile refineries, i.e. they will need to have access (inter alia) to appropriateudinfrastructure, electricity, water and personnel. As most of the unexploited forest biomass resources areudlocated in inland areas, particular attention should be paid to developing terminal-refinery-integratedudsupply chains in these areas for supplying industry-dense areas for further refining or direct use inudprocesses.
机译:瑞典和芬兰目前的生物精炼活动和新的生物精炼厂计划主要集中在为交通部门生产液态生物燃料。但是,纸浆工业 ud(和其他参与者)也在开发新的生物精炼工艺,例如:将纸浆纤维 udin转化为新型材料和产品(例如纺织品,各种复合材料和纳米纤维素);升级残留物流以提供可销售的产品(例如通过黑液气化,木质素提取,半纤维素的降解,以及纤维污泥的气化或水解);实施过程蒸汽和可销售产品的联合生产 udof的过程(例如气化和热解);并从进来的原材料中提取有用的物质(例如,半纤维素的预提取)。因此,例如,越来越多地将纸浆厂的油渣油用作汽车燃料和各种化学药品的原料。 ud未来生物炼油厂的原料要求(就其丰度,质量和供应时机而言)可能与那些完全不同。对传统的林业和能源工厂而言,对供应链的要求相当大幅度地调整。因此,至关重要的是,要协调瑞典北部和芬兰在Botnia-Atlantica(BA)地区的研究和开发目标,并开发出高效,可持续的森林原料供应链。因此,该项目的总体目标是从现有的,计划的或潜在的采购区域中获取优化BA地区炼油厂生物质供应方式的知识。研究得出的总体结论是,可以显着降低供应成本通过整合纸浆和残渣分类的供应而不是通过单独的供应链来提供它们。 ud然而,评估可能系统的成本和收益并不容易,因为它们受到多种原料分类和需求之间复杂相互作用的影响多个用户。此外,在 udchain的较晚位置将茎木与残留物分离的成本可能会减少或消除整合采伐的好处。因此,对于分离这些类别几乎没有收益的应用程序,其优点将是“最烂”。预处理还可以增加原料的可用量,从而使以前可行的分类成为可能。但是,应通过增加供应量而实现的任何成本削减与额外的预处理成本进行权衡。总体而言,该项目研究的方案表明在某些情况下,与当前的最佳实践相比,新的实践可能将供应成本降低约10%。 ud另一个关键因素是确保可以提供各种质量的生物质。迅速已调整,并适应需求的变化(可能无法预测)。终端可以在提供这种灵活性方面发挥关键作用。当前的端子主要用作过渡点,在这里,除粉碎外,都进行了小升级。由于原始森林生物量由于其相对较低的价值而无法长距离运输,因此可能需要在远距离运输之前在靠近码头的码头进行稳健的价值提升。这样的终端必须相当复杂才能用作灵活/半移动的炼油厂,即它们将需要(特别是)适当的基础设施,电力,水和人员的访问权限。由于大部分未开发的森林生物质资源都被分配到内陆地区,因此应特别注意在这些地区开发终端精炼厂集成的供应链,以为工业密集区提供进一步的提炼或直接加工的用途。

著录项

  • 作者

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 sv
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号