首页> 外文OA文献 >Methodology for Pressurized Thermal Shock Analysis in Nuclear Power Plant
【2h】

Methodology for Pressurized Thermal Shock Analysis in Nuclear Power Plant

机译:核电厂加压热冲击分析的方法论

摘要

The relevance of the fracture mechanics in the technology of the nuclear power plant isudmainly connected to the risk of a catastrophic brittle rupture of the reactor pressure vessel.udThere are no feasible countermeasures that can mitigate the effects of such an event thatudimpair the capability to maintain the core covered even in the case of properly functioningudof the emergency systems.udThe origin of the problem is related to the aggressive environment in which the vesseludoperates for long term (e.g. more than 40 years), characterized by high neutron flux duringudnormal operation. Over time, the vessel steel becomes progressively more brittle in theudregion adjacent to the core. If a vessel had a preexisting flaw of critical size and certainudsevere system transients occurred, this flaw could propagate rapidly through the vessel,udresulting in a through-wall crack. The severe transients that can lead the nuclear powerudplant in such conditions, known as Pressurized Thermal Shock (PTS), are characterized byudrapid cooling (i.e., thermal shock) of the a part of the internal reactor pressure vessel surfaceudthat may be combined with repressurization can create locally a sudden increase of theudstresses inside the vessel wall and lead to the suddenly growth of the flaw inside the vesseludthickness.udBased on the long operational experience from nuclear power plants equipped with reactorudpressure vessel all over the world, it is possible to conclude that the simultaneousudoccurrence of critical-size flaws, embrittled vessel, and a severe PTS transient is a very lowudprobability event. Moreover, additional studies performed at utilities and regulatoryudauthorities levels have shown that the RPV can operate well beyond the original design lifeud(40 years) because of the large safety margin adopted in the design phase.udA better understanding and knowledge of the materials behavior, improvement inudsimulating in a more realistic way the plant systems and operational characteristics and a better evaluation of the loads on the RPV wall during the PTS scenarios, have shown thatudthe analysis performed during the 80’s were overly conservative, based on the tools andudknowledge available at that time.udNowadays the use of best estimate approach in the analyses, combined with tools for theuduncertainty evaluation is taking more consideration to reduce the safety margins, even fromudthe regulatory point of view. The US NRC has started the process to revise the technical baseudof the PTS analysis for a more risk-informed oriented approach. This change has the aim toudremove the un-quantified conservatisms in all the steps of the PTS analysis, from theudselection of the transients, the adopted codes and the criteria for conducting the analysisuditself thus allow a more realistic prediction.udThis change will not affect the safety, because beside the operational experience, severaludanalysis performed by thermal hydraulic, fracture mechanics and Probabilistic SafetyudAssessment (PSA) point of view, have shown that the reactor fleet has little probability ofudexceeding the limits on the frequency of reactor vessel failure established from NRCudguidelines on core damage frequency and large early release frequency through the periodudof license extension. These calculations demonstrate that, even through the period of licenseudextension, the likelihood of vessel failure attributable to PTS is extremely low (≈10-8/year)udfor all domestic pressurized water reactors.udDifferent analytical approaches have been developed for the evaluation of the safety marginudfor the brittle crack propagation in the rector pressure vessel under PTS conditions. Due toudthe different disciplines involved in the analysis: thermal-hydraulics, structural mechanicsudand fracture mechanics, different specialized computer codes are adopted for solving singleudpart of the problem.udThe aims of this chapter is to present all the steps of a typical PTS analysis base on theudmethodology developed at University of Pisa with discussion and example calculationudresults for each tool adopted and their use, based on a more realistic best estimate approach.udThis methodology starts with the analysis of the selected scenario by mean a SystemudThermal-Hydraulic (SYS-TH) code such as RELAP5 [2][3], RELAP5-3D [1], CATHARE2ud[4][6], etc. for the analysis of the global behavior of the plant and for the evaluation of theudprimary side pressure and fluid temperature at the down-comer inlet.udFor a more deep investigation of the cooling load on the rector pressure vessel internaludsurface at small scale, a Computational Fluid Dynamics (CFD) code is used. The calculatedudtemperature profile in the down-comer region is transferred to a Finite Element (FE)udstructural mechanics code for the evaluation of the stresses inside the RPV wall. The stressesudinduced by the pressure in the primary side are also evaluated.udThe stress intensity factor at crack tip is evaluated by mean the weight function methodudbased on a simple integration of the stresses along the crack border multiplied by the weightudfunction. The values obtained are compared with the critical stress intensity factor typical ofudthe reactor pressure vessel base material for the evaluation of the safety margin.
机译:断裂力学在核电站技术中的相关性主要与反应堆压力容器发生灾难性脆性破裂的风险有关。 ud没有可行的对策可以减轻这种事件的影响消灭即使在应急系统正常运行的情况下,也能保持核心覆盖。 ud问题的根源与长期(例如,超过40年)不正常运行的侵蚀性环境有关。在正常运行期间中子通量较高。随着时间的流逝,容器钢在靠近型芯的 ud区域逐渐变脆。如果容器预先存在临界尺寸的缺陷,并且发生了某些过大的系统瞬变,则该缺陷可能会在整个容器中迅速传播,从而导致穿墙裂缝。在这种情况下可能导致核动力厂发电厂的严重瞬变,即所谓的加压热冲击(PTS),其特征是反应堆内部压力容器表面的一部分的 udrapidly冷却(即热冲击) ud结合再加压会在局部造成容器壁内 udress的突然增加,并导致容器内缺陷的突然增加 udthickness。 ud基于配备有反应堆 udpressure容器的核电站的长期运行经验在世界范围内,有可能得出这样的结论:临界尺寸缺陷,脆化的血管和严重的PTS瞬变同时发生/异常发生是非常低的可能性。此外,在公用事业和监管部门中进行的其他研究表明,由于在设计阶段采用了很大的安全裕度,RPV可以在最初的设计寿命(ud(40年))内很好地运行。材料的行为,以更实际的方式模拟工厂系统和运行特性以及在PTS情景中对RPV墙的负载进行更好的评估进行模拟的改进表明, ud在80年代进行的分析过于保守, ud如今,在分析中使用最佳估计方法,结合不确定性评估的工具,甚至从监管的角度出发,都在更多地考虑降低安全边际。美国NRC已开始修改PTS分析的技术基础,以更加了解风险的方法。此更改的目的是从瞬态的非选择,所采用的代码和进行分析的标准去掉PTS分析的所有步骤中未量化的保守性,从而允许进行更现实的预测。 ud此更改不会影响安全,因为除了运行经验外,通过热工水力,断裂力学和概率安全 udAsssment(PSA)观点进​​行的几项 udana分析表明,反应堆船队几乎不可能超越极限。 NRC 关于堆芯损坏频率和许可证延期 udd较大提前释放频率的指导原则确定的反应堆容器故障频率。这些计算表明,即使在整个许可紧张状态期间,对于所有家用压水堆来说,归因于PTS的容器故障的可能性都非常低(≈10-8/年) ud。在PTS条件下评估在直肠压力容器中脆性裂纹扩展的安全裕度 ud。由于分析涉及不同的学科:热工,结构力学,断裂力学,因此采用了不同的专业计算机代码来解决单个问题。 ud本章的目的是介绍分析方法的所有步骤。基于比萨大学开发的 udmethodology的典型PTS分析,并基于更现实的最佳估计方法,对所采用的每种工具及其使用进行了讨论和示例计算结果, ud此方法始于对所选方案的分析,表示系统 udThermal-Hydraulic(SYS-TH)代码,例如RELAP5 [2] [3],RELAP5-3D [1],CATHARE2 ud [4] [6]等,用于分析 ud用于对下导管入口处的主要侧压力和流体温度进行评估。 ud用于更小范围地研究直肠压力容器内部 udsurface上的冷却负荷,则使用计算流体动力学(CFD)代码。在下导管区域中计算出的高温温度曲线被传输到有限元(FE)结构力学代码中,以评估RPV墙内的应力。 ud还评估了由初级侧压力引起的应力 ud。 ud裂纹尖端处的应力强度因子通过平均权函数方法 ud进行评估,该函数基于沿裂纹边界的应力乘以权重 udfunction的简单积分。将获得的值与反应堆压力容器基材的典型临界应力强度因子进行比较,以评估安全系数。

著录项

  • 作者

    DAuria F.; Araneo D.;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号