首页> 外文OA文献 >Preparation of a Highly Active Bicrystalline Tio2 Photocatalyst and the Characterization of the Synergetic Effect of Its Dural Crystalline Phases
【2h】

Preparation of a Highly Active Bicrystalline Tio2 Photocatalyst and the Characterization of the Synergetic Effect of Its Dural Crystalline Phases

机译:高活性双晶二氧化钛光催化剂的制备及其硬质合金相协同效应的表征

摘要

[[abstract]]The primary goal of this three-year proposal is to investigate whether there is a synergetic effect between two metal oxide semiconductors with different band structure (which is the positions of conduction and valence band and band gap energy) within a bicrystalline photocatalyst. A photoelectrochemical method using methyl viologen will be established to measure the flat band potential of all the metal oxide semiconductors. A diffuse-reflectance UV-Vis spectrometer will be used to measure the band gap energy. By combining both measurements, we will be able to determine exactly the band structures of metal oxide semiconductors. In the first year of the project, a hydrothermal method will be utilized to synthesize titania particles with well-defined crystalline phase (including anatase, rutile and brookite) and particle size. We will investigate how the variation in titania particle size modifies their band structures. Furthermore, TiO2 (B) nanotube/titania nanoparticle bicrystalline mixtures will be prepared using dry physical mixing and wet mixing to investigate synergetic effect between the two components. In the second year, a precipitation method using aqueous ammonia and metal salts will be used to prepare SiO2, Fe2O3, SnO2 and ZrO2 powder, which will be mixed with TiO2(B) nanotubes to prepare bicrystalline mixture. Nanoparticles contained in a sol solution will be impregnated on the TiO2(B) nanotubes for preparing a better dispersed bicrystalline mixture. The mixtures from both preparation methods will be used to investigate the synergetic effect between TiO2 (B) and four different metal oxides. In the third year, we will attempt to prepare sulfated TiO2(B) nanotubes. They will be prepared by impregnating TiO2 (B) nanotubes with sulfate solution. The effect of volume/mass ratio of SO4 2- solution/TiO2(B), SO4 2- concentration, sulfate source (such as H2SO4 or (NH4)2SO4) and the calcination temperature on the physical and acidic properties as well as the band structure of the sulfated TiO2(B) nanotubes will all be investigated. Metal oxide nanoparticles will also be dispersed onto sulfated TiO2 (B) nanotubes to prepare a sulfated TiO2 (B) nanotube/metal oxide bicrystalline mixture for synergetic effect investigation. All the above photocatalysts will be characterized by various spectroscopic methods such as XRD, SEM, TEM, BET, TPD/NH3, DRIFTS/pyridine, diffuse-reflectance UV-Vis spectroscopy, XPS and photoelectrochemical measurements for their physical (particle size, surface area, morphology, fine structure, band structure and phase composition) and chemical properties (acidity, sulfate structure, oxidation state and content of sulfur). The activities of the above single or bicrystalline photocatalysts will be measured by photocatalytic degradation of salicylic acid in aqueous solution to see whether there is a synergetic effect. The kinetic data of the photocatalytic degradation will be analyzed using Langmuir-Hinshelwood model to obtain the degradation rate constant, and the adsorption of salicylic acid on these titania photocatalyst will also be performed to obtain the adsorption equilibrium constant. Combining both set of data, we can obtain the scientific reasons underneath the synergetic effect. Furthermore, Pt metal will be deposited on TiO2(B) nanotube/anatse particle and TiO2(B)/metal oxide by photodeposition method, respectively. Subsequently, XPS and TEM will be used to analyze the location of the deposited Pt, from which we can verify the validity of the synergetic effect predicted by the measured band structure.
机译:[[摘要]]这项为期三年的建议的主要目标是研究双晶内具有不同能带结构的两个金属氧化物半导体(导带,价带和带隙能的位置)之间是否有协同效应。光催化剂。将建立一种使用甲基紫精的光电化学方法来测量所有金属氧化物半导体的平带电势。漫反射紫外可见光谱仪将用于测量带隙能量。通过将这两个测量值结合起来,我们将能够准确确定金属氧化物半导体的能带结构。在该项目的第一年,将采用水热法合成具有明确晶体相(包括锐钛矿,金红石和板钛矿)和粒径的二氧化钛颗粒。我们将研究二氧化钛粒径的变化如何改变其能带结构。此外,将使用干式物理混合和湿式混合制备TiO2(B)纳米管/二氧化钛纳米颗粒双晶混合物,以研究两种组分之间的协同作用。第二年,将使用氨水和金属盐的沉淀法制备SiO2,Fe2O3,SnO2和ZrO2粉末,然后将其与TiO2(B)纳米管混合以制备双晶混合物。溶胶溶液中包含的纳米颗粒将被浸渍在TiO2(B)纳米管上,以制备更好分散的双晶混合物。两种制备方法的混合物将用于研究TiO2(B)与四种不同金属氧化物之间的协同作用。在第三年,我们将尝试制备硫酸化的TiO2(B)纳米管。它们将通过用硫酸盐溶液浸渍TiO2(B)纳米管来制备。 SO4 2-溶液/ TiO2(B)的体积/质量比,SO4 2-浓度,硫酸盐源(如H2SO4或(NH4)2SO4)和煅烧温度对物理和酸性及谱带的影响将研究硫酸化的TiO2(B)纳米管的结构。金属氧化物纳米颗粒也将分散在硫酸化的TiO2(B)纳米管上,以制备硫酸化的TiO2(B)纳米管/金属氧化物双晶混合物,用于协同效应研究。所有上述光催化剂将通过各种光谱方法进行表征,例如XRD,SEM,TEM,BET,TPD / NH3,DRIFTS /吡啶,漫反射紫外-可见光谱,XPS和光电化学测量,以对其物理(粒径,表面积)进行表征。 ,形态,精细结构,能带结构和相组成)和化学性质(酸度,硫酸盐结构,氧化态和硫含量)。通过水杨酸在水溶液中的光催化降解来测量上述单晶或双晶光催化剂的活性,以观察是否存在协同作用。使用Langmuir-Hinshelwood模型分析光催化降解的动力学数据以获得降解速率常数,并且还将水杨酸在这些二氧化钛光催化剂上的吸附以获得吸附平衡常数。结合这两组数据,我们可以得出协同效应下的科学原因。此外,将通过光沉积法将Pt金属分别沉积在TiO2(B)纳米管/纳米颗粒和TiO2(B)/金属氧化物上。随后,将使用XPS和TEM分析沉积的Pt的位置,从中我们可以验证由测得的能带结构预测的协同效应的有效性。

著录项

  • 作者

    林秋薰;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号