首页> 外文OA文献 >Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models
【2h】

Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models

机译:由排放驱动的全球气候模型得出的全球平均温度变化的情景和模型不确定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.
机译:我们比较了全球平均温度的未来变化,以响应不同的未来情景,这是全球气候模型(GCM)首次由排放驱动而不是浓度驱动的扰动参数集合引起的。这些新的GCM模拟对大气反馈,陆地碳循环,海洋物理和气溶胶硫循环过程中的不确定性进行了采样。在考虑排放而不是浓度驱动的模拟时,我们发现预计温度响应的范围更广(在积极缓解方案中,第10至90个百分位数范围为1.7 K,对于高端,照常情况,则为3.9 K)。一小部分由强大的大气反馈和碳循环响应组合而成的模拟结果表明,温度升高超过9 K(RCP8.5),甚至在积极缓解(RCP2.6)条件下温度也超过4K。在更大的温度范围内(对于排放驱动的实验),它们不会改变现有的期望(基于先前的浓度驱动的实验),在不同的不确定性来源很重要的时间范围内。新的模拟为每种排放情景采样了一系列未来大气浓度。对于SRES A1B和代表集中路径(RCP),用于驱动GCM集合的集中场景都位于我们模拟分布的低端。该设计决策(以前评估的遗留物)可能导致浓度驱动的实验在未来的预测中对强反馈响应进行欠采样。除低端外,我们的排放驱动模拟集成涵盖了CMIP5排放驱动模拟的全局温度响应。低气候敏感性和低碳循环反馈的组合导致许多CMIP5响应低于我们的整体范围。该合奏模拟了许多高于CMIP5碳循环范围的高端响应。这些高端模拟可以链接到一些更强大的碳循环反馈的采样以及4.5 K以上的气候敏感性的采样。后一方面强调了确定现实世界中的气候敏感性约束条件的优先次序,如果实现,将导致减排预测的全球平均温度变化的上限。这里展示的模拟集合提供了一个框架,以探索当前可观测值与未来变化之间的关系,而未来预测的变化的广泛传播凸显了此类工作的持续需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号