首页> 外文OA文献 >Using Distributed Temperature Sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux
【2h】

Using Distributed Temperature Sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux

机译:使用分布式温度感测来监测地表温度和相关基材热通量的场尺度动态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

We present one of the first studies of the use of Distributed Temperature Sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer and in the soil. Our field site was at a groundwater-fed wet meadow in the Netherlands covered by a canopy layer (between 0-0.5 m thickness) consisting of grass and sedges. At this site, we ran a single cable across the surface in parallel 40 m sections spaced by 2 m, to create a 40×40 m monitoring field for GST. We also buried a short length (≈10 m) of cable to depth of 0.1±0.02 m to measure soil temperature. We monitored the temperature along the entire cable continuously over a two-day period and captured the diurnal course of GST, and how it was affected by rainfall and canopy structure. The diurnal GST range, as observed by the DTS system, varied between 20.94 and 35.08◦C; precipitation events acted to suppress the range of GST. The spatial distribution of GST correlated with canopy vegetation height during both day and night. Using estimates of thermal inertia, combined with a harmonic analysis of GST and soil temperature, substrate and soil-heat fluxes were determined. Our observations demonstrate how the use of DTS shows great promise in better characterising area-average substrate/soil heat flux, their spatiotemporal variability, and how this variability is affected by canopy structure. The DTS system is able to provide a much richer data set than could be obtained from point temperature sensors. Furthermore, substrate heat fluxes derived from GST measurements may be able to provide improved closure of the land surface energy balance in micrometeorological field studies. This will enhance our understanding of how hydrometeorological processes interact with near-surface heat fluxes.
机译:我们提出了沿光纤电缆使用分布式温度传感(DTS)来监测地表温度(GST)和土壤温度的时空变化的初步研究之一,并提供了对热通量的估计。冠层的基础和土壤。我们的现场位于荷兰的一个由地下水喂养的湿草甸上,覆盖着由草和莎草组成的冠层(厚度在0-0.5 m之间)。在此站点上,我们以40 m的平行线(间隔2 m)在表面上铺设了一条电缆,以创建一个40×40 m的GST监视区域。我们还埋入了一条较短的电缆(约10 m),深度为0.1±0.02 m,以测量土壤温度。我们在两天内连续监测整个电缆的温度,并记录了GST的日变化过程,以及GST如何受到降雨和冠层结构的影响。 DTS系统观察到的日GST范围在20.94至35.08°C之间变化。降水事件抑制了GST的范围。 GST的空间分布与昼夜冠层植被高度相关。利用热惯性估计值,结合GST和土壤温度的谐波分析,确定了基质和土壤热通量。我们的观察表明,DTS的使用如何在更好地表征平均面积的基质/土壤热通量,其时空变化以及冠层结构如何影响这种变化方面显示出巨大的希望。与从点温度传感器获得的数据集相比,DTS系统能够提供更丰富的数据集。此外,在微气象现场研究中,从GST测量获得的基质热通量可能能够改善陆面能量平衡。这将加深我们对水文气象过程与近地表热通量相互作用的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号