首页> 外文OA文献 >Construction of Low-Dimensional Ventilation Models using CFD Simulations
【2h】

Construction of Low-Dimensional Ventilation Models using CFD Simulations

机译:使用CFD模拟构造低维通风模型

摘要

This work aims to construct reliable low-dimensional ventilation models with aid of CFD simulation data. Once constructed, these models can predict indoor pollutant concentration distributions very fast and efficiently, further facilitating on-line monitoring and control of ventilation systems. In this work, ANSYS FLUENT and an open-source CFD package OpenFOAM are employed as CFD simulation tools. For CFD simulations, the Reynolds-averaged Navier¨CStokes (RANS) approach is used. In a first step, we investigate the accuracy of RANS modelling for indoor ventilation at transitional slot-Reynolds numbers, with focus on turbulent inlet boundary conditions on indoor air-flow characteristics and pollutant dispersion. A simple benchmark ventilation case under constant-density conditions is considered. Two turbulence closure models are included in the study, i.e., a low-Re k-¦Å model, and the SST k-¦Ø model. When looking at velocity fields, we find that the influence of turbulent length scales at the inlet boundary on the indoor flow field is small. The influence of turbulence intensity (ranging between 2% and 30%) is considerably larger, in particular affecting the separation point of the inlet jet along the top wall. When further investigating the effect of turbulent conditions at the inlet on pollutant dispersion, we find that variations of inlet turbulent length scales lead to differences in pollutant concentration of up to 20%. Variations due to changes in inlet turbulent intensity lead to differences up to a factor 2. These findings strongly emphasize the importance of imposing realistic boundary conditions for turbulence models. In a second step, we investigate the development of linear low-dimensional ventilation models for stationary pollutant source conditions. The RANS simulation models investigated earlier, serve as a benchmark testing ground. We employ a discrete Green¡¯s function approach to derive a linear low-dimensional ventilation model directly from the governing equations for indoor ventilation (i.e. the Navier¨CStokes equations supplemented with a transport equation for indoor-pollutant concentration). It is shown that the flow equations decouple from the concentration equation when the ratio ¦Á of air mass-flow rate m ?_a to pollutant mass-flow rate m ?_p increases to infinity. A low-dimensional discrete representation of the Green¡¯s function of the concentration equation can then be constructed, either based on numerical simulations or experiments. This serves as a linear model which allows for the reconstruction of concentration fields resulting from any type of pollutant source distribution. A ventilation case under constant-density conditions is again considered. Discrete linear ventilation models for the concentration are then derived and compared to coupled RANS simulations. An analysis of errors in the discrete linear model is then presented. In a next step, the validity and applicability of linear ventilation models for heavy-gas dispersion (density/buoyancy effects) is investigated. The effect of buoyancy forcehas been taken into account in turbulent production term to obtain correct diffusion behaviour. A low-Re k-¦Å model is employed and the generalised gradient diffusion hypothesis is used for buoyancy source term. It is concluded that the flow equations decouple from the concentration equation when the mass flux ratio ¦Á is 10 times higher than the range without density differences ¦Á>10
机译:这项工作旨在借助CFD模拟数据构建可靠的低维通风模型。一旦构建,这些模型就可以非常快速有效地预测室内污染物的浓度分布,从而进一步促进通风系统的在线监测和控制。在这项工作中,ANSYS FLUENT和开源CFD软件包OpenFOAM被用作CFD模拟工具。对于CFD仿真,使用雷诺平均Navier¨CStokes(RANS)方法。第一步,我们研究在过渡缝隙-雷诺数下进行室内通风的RANS模型的准确性,重点是室内空气流动特性和污染物扩散的湍流入口边界条件。考虑在恒定密度条件下的简单基准通风情况。研究中包括了两种湍流闭合模型,即低Rek-α模型和SSTk-Ø模型。当观察速度场时,我们发现入口边界处的湍流长度尺度对室内流场的影响很小。湍流强度的影响(范围在2%到30%之间)要大得多,特别是影响沿顶壁的入口射流的分离点。在进一步研究入口湍流条件对污染物扩散的影响时,我们发现入口湍流长度尺度的变化会导致污染物浓度差异高达20%。由于入口湍流强度变化而引起的变化导致差异高达2倍。这些发现强烈强调了为湍流模型施加逼真的边界条件的重要性。在第二步中,我们研究了针对固定污染物源条件的线性低维通风模型的开发。较早研究的RANS仿真模型可作为基准测试场。我们采用离散格林函数方法直接从室内通风的控制方程式(即Navier¨CStokes方程式补充了室内污染物浓度的运输方程式)导出线性低维通风模型。结果表明,当空气质量流量m?_a与污染物质量流量m?_p的比值Á增加到无穷大时,流量方程与浓度方程解耦。然后,可以基于数值模拟或实验来构建浓度方程的格林函数的低维离散表示。这是一个线性模型,可用于重建由任何类型的污染物源分布产生的浓度场。再次考虑在恒定密度条件下的通风情况。然后导出浓度的离散线性通风模型,并将其与耦合的RANS模拟进行比较。然后介绍了离散线性模型中的误差分析。在下一步中,研究了线性通风模型对重气体扩散(密度/浮力效应)的有效性和适用性。为了获得正确的扩散行为,在湍流生产期间已经考虑了浮力的影响。采用低Rek-κ模型,对浮力源项采用广义梯度扩散假设。结论是,当质量通量比α比无密度差α> 10的范围高10倍时,流量方程与浓度方程解耦。

著录项

  • 作者

    Cao Shijie;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 nl
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号