首页> 外文OA文献 >Mineralogical effects on the intensified mineral carbonation of steel slags: kinetics, conversion, basicity and products
【2h】

Mineralogical effects on the intensified mineral carbonation of steel slags: kinetics, conversion, basicity and products

机译:矿物学对钢渣强化矿物碳化的影响:动力学,转化率,碱度和产物

摘要

Mineral carbonation, the reaction of carbon dioxide with alkaline minerals, is an attractive carbon sequestration approach owing to the geochemical stability of carbonates. When applied to low-value or hazardous industrial alkaline residues, it can result in the reduction of basicity and leaching, enabling valorisation or safe disposal. However, process limitations including high energy intensity, low reaction conversion, and slow reaction kinetics, have thus far prevented mineral carbonation of wastes from been widely applied. These barriers are caused by inefficient processing, but also by mineralogical aspects inherent to the materials.Alkaline waste materials are typically composed of several mineral phases that may or may not be susceptible to mineral carbonation, and which, if reactive to CO2, may exhibit varying degrees of carbonation kinetics and influence on the material’s basicity. The formation and character (e.g. thickness, porosity) of passivating layers can also be affected by the relative solubility of the minerals. Most carbonation studies to date, however, have focussed on the chemical composition of these materials rather than on their mineralogical composition. The commonly used Steinour equation, for example, relies solely on the amounts of alkali oxides to predict CO2 uptake capacity. Though stoichiometrically accurate, this prediction can be overly optimistic, causing doubts whether carbonation processes are ineffective in reaching complete conversion (due to insufficient process severity or formation of passivating layers), or if the unreacted material is inert to carbonation.In the present work, three types of steel slags are utilized for mineral carbonation: argon oxygen decarburization slag (AOD), continuous casting slag (CC), and basic oxygen furnace slag (BOF). This study aims to provide insight on the carbonation behaviour of various minerals commonly found in steel slags, including: lime, portlandite, periclase, brucite, γ- and β-dicalcium silicates, srebrodolskite, bredigite, cuspidine, merwinite, åkermanite, and gehlenite. The carbonation products, which include various forms of calcium and magnesium carbonates (e.g. calcite, aragonite...), silica and intermediate products (e.g. wollastonite) are also characterized, both with respect to composition and to the process conditions that promote their formation (temperature, ionic concentrations, sonication).Three experimental approaches of increasing levels of process severity have been tested and optimized, and are discussed in this work: (i) mild wet carbonation; (ii) accelerated slurry carbonation, and (iii) rapid high temperature direct carbonation. A comparison is made of the characteristics of these processes and the results achieved, with respect to carbonation kinetics, mineral conversion and basicity reduction. In addition to carbonation of the innate slags, high purity single minerals (synthetic and geological) were also prepared and tested to reveal in more detail their carbonation behaviour. Mineralogical assessment was made by Rietveld refinement technique of XRD diffractograms.The understanding of the mineralogical behaviour of alkaline materials towards mineral carbonation can enable the optimal development of intensified processes that better meet energy and economical demands of carbon sequestration technologies, as well as materials valorisation requirements. The outcome includes better choice of carbonation technology, optional hot-stage tuning of residue composition, and a priori prediction of carbonation effects, such as CO2 uptake, basicity and leaching behaviour.
机译:矿物碳酸化是二氧化碳与碱性矿物的反应,由于碳酸盐的地球化学稳定性,它是一种有吸引力的固碳方法。当将其应用于低价值或危险的工业碱性残渣时,会导致碱度降低和浸出,从而实现增值或安全处置。然而,迄今为止,包括高能量强度,低反应转化率和缓慢反应动力学的工艺限制已经阻止了废物矿物碳酸化的广泛应用。这些障碍是由于加工效率低下造成的,也由材料固有的矿物学方面引起的。碱性废料通常由几种矿物相组成,这些矿物相可能会或可能不会发生矿物碳酸化,并且如果对二氧化碳具有反应性,则可能会表现出变化。碳化动力学的程度以及对材料碱度的影响。钝化层的形成和特性(例如厚度,孔隙率)也可能受矿物的相对溶解度影响。但是,迄今为止,大多数碳化研究都集中在这些材料的化学组成上,而不是在矿物学上。例如,常用的Steinour方程仅依赖于碱性氧化物的量来预测CO2的吸收能力。尽管化学计量学上是准确的,但这种预测可能过于乐观,令人怀疑碳化过程是否无法有效地实现完全转化(由于过程严重性不足或钝化层的形成),或者未反应的材料对碳化呈惰性。三种类型的钢渣用于矿物碳化:氩氧脱碳渣(AOD),连铸渣(CC)和碱性氧气炉渣(BOF)。这项研究旨在提供对钢渣中常见的各种矿物的碳酸化行为的见解,包括:石灰,硅酸盐,钙镁石,水镁石,γ-和β-二钙硅酸盐,亚闪石,ite石、,石定,硅藻土,钙锰矿和钙钠石。碳酸化产物包括各种形式的碳酸钙和碳酸镁(例如方解石,文石...),二氧化硅和中间产物(例如硅灰石),其组成和促进其形成的工艺条件(温度,离子浓度,超声处理)。已经测试和优化了三种提高过程严重程度的实验方法,并在这项工作中进行了讨论:(i)温和的湿碳酸化; (ii)加速浆料碳酸化,和(iii)快速高温直接碳酸化。比较了这些过程的特性和所获得的结果,涉及碳酸化动力学,矿物转化和碱度降低。除了先天矿渣的碳化外,还制备并测试了高纯度的单一矿物(合成和地质矿物),以更详细地揭示其碳化行为。通过X射线衍射图的Rietveld精细化技术进行矿物学评估,了解碱性材料对矿物碳酸化的矿物学行为,可以使强化工艺得到最佳开发,从​​而更好地满足碳固存技术的能源和经济要求以及材料的增值要求。结果包括更好的碳酸化技术选择,可选的残留物成分热阶段调整以及对碳酸化作用的先验预测,例如二氧化碳的吸收,碱度和浸出行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号