首页> 外文OA文献 >Roles of unstable chemical species and non-equilibrium reaction routes on properties of reaction product: a review
【2h】

Roles of unstable chemical species and non-equilibrium reaction routes on properties of reaction product: a review

机译:不稳定化学物种和非平衡反应路线对反应产物性质的作用:综述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Chemical species might be held in a state being away from equilibrium state, at least temporarily, as represented by non-graphitic carbon and gaseous ammonia NH3 with suppressed extent of dissociation by flowing. Such chemical species X in unstable state would possess chemical activity a(X) considerably higher than that of the same element in equilibrium (reference) state. In case of carbon, a(C) of amorphous carbon is higher than that of graphite (equilibrium state of C; a(C) = 1). Thus, when metal M is reacted with excess C, carbon content x' in carbide MC x' in equilibrium with amorphous carbon becomes higher than x in MC x in equilibrium with graphite. In case of uranium carbo-nitride UC x N1–x in equilibrium with excess free C under given conditions of temperature T and N2 gas partial pressure p(N2), x' in UC x' N1–x' in equilibrium with amorphous carbon was experimentally demonstrated to be higher than x in UC x N1–x in equilibrium with graphite. Gaseous ammonia NH3 with suppressed extent of dissociation by flowing would yield very high nitrogen activity a(N) and modestly high hydrogen activity a(H) while NH3 dissociated to N2 and H2 to reach equilibrium state in closed reaction chamber would yield a(N) and a(H) to be represented by respective partial pressures, p(N2)1/2 and p(H2)1/2, in the gas phase. Synthesis of mono-nitride MoN of Mo in N2 gas was reported to be impossible even at high pressure up to 300 atm in autoclave but MoN co-existing with sub-nitride Mo2N might be synthesized in flowing NH3 gas at normal pressure. As such, unstable chemical species might allow us to synthesize novel reaction product that cannot be prepared by using stable chemical species alone in the reactant. However, special care must be taken in usage of unstable chemical species. For example, in case of non-graphitic carbon, graphitization might proceed with considerably fast rate when the reaction temperature is set to be well above 2000 K and thence no effect of high a(C) might be gained at reaction temperature exceeding 2000 K. On the other hand, in case of flowing NH3 gas, extent a of dissociation of NH3 gas would depend on the position along the flow path of NH3 gas stream (i.e., a tends to rise inevitably on going from the up-stream side to the down-stream side) as well as on the NH3 gas flow rate (i.e., a at specific position in the flow path tends to rise with diminishing NH3 gas flow rate). On the other hand, rapid solidification processing with cooling rate reaching to 106 K/s has been employed for refinement of microstructure of alloys and for extension of solubility limit as well as for formation of amorphous phases. Rapid solidification is considered as ultra-fast quenching process of high temperature micro structure, or more precisely, retention of atomistic configuration in molten state of multi-component system through extraction of heat with very high rate to inhibit atom diffusion processes to reach inherent equilibrium state defined uniquely as functions of temperature T and alloy composition. On the other hand, under certain mode of operation of solar furnace using concentrated solar beam as the reaction heat source, rapid heating to reach reaction temperature around 2000 K from ambient temperature within order of a second or even less is realized. During carbide synthesis from tungsten (W) under such operation mode of solar furnace, the authors detected evidence of formation of W m C n phases that did not correspond to the phase anticipated by referring to available equilibrium binary W–C phase diagram at the processing temperature. This experimental evidence is tentatively appreciated in terms of small energetic differences among WmCn phases with varying m/n ratios. That is, once certain W mCn phase is formed during rapid heating of W/C powder mixture, the formed phase would remain stable at the processing temperature T even if it is not the genuine equilibrium phase at T without being transformed to the genuine equilibrium phase at the specified T due to smallness of driving force for the phase transformation from a meta-stable phase W m C n to the genuine equilibrium phase W m C n. As such, deliberate usage of chemical species or processing route being away from equilibrium state might be of pragmatic convenience to synthesize novel compound of a given chemical constitution that cannot be prepared from reaction using stable chemical constituents alone or quasi-equilibrium processing route. Aspects regarding roles of unstable chemical species (non-graphitic carbon, uncracked ammonia gas) and non-equilibrium reaction routes (ultra-fast cooling/heating) on properties (chemical composition, micro structure) of reaction product are reviewed integrally from generalized standpoint of usage of non-equilibrium state for synthesis of novel reaction product.
机译:化学物质可能至少暂时保持处于远离平衡状态的状态,如非石墨碳和气态氨NH3所代表的那样,其流动解离程度受到抑制。这种处于不稳定状态的化学物质X的化学活性a(X)远高于处于平衡(参考)状态的相同元素的化学活性。在碳的情况下,无定形碳的a(C)高于石墨(C的平衡态; a(C)= 1)。因此,当金属M与过量的C反应时,与非晶态碳平衡的碳化物MC x'中的碳含量x'大于与石墨平衡的MC x中的x。在给定温度T和N2气体分压p(N2)的条件下,铀碳氮化物UC x N1-x处于平衡且游离碳过量的情况下,UC x'N1-x'中与无定形碳平衡的x'为实验证明,在与石墨的平衡下,它比UC x N1-x中的x高。气态氨NH3在流动中的解离程度受到抑制,会产生很高的氮活度a(N)和适度高的氢活度a(H),而NH3在封闭的反应室中离解成N2和H2达到平衡状态会产生a(N) a(H)由气相中的分压p(N2)1/2和p(H2)1/2表示。据报道,即使在高压釜中在高达300 atm的高压下,也无法在N2气体中合成Mo的单氮化物MoN,但在常压下流动的NH3气体中可能会与亚氮化物Mo2N共存。因此,不稳定的化学物质可能使我们能够合成无法通过仅在反应物中单独使用稳定的化学物质来制备的新型反应产物。但是,在使用不稳定的化学物质时必须格外小心。例如,在非石墨碳的情况下,当将反应温度设置为远高于2000 K时,石墨化可能会以相当快的速度进行,因此在超过2000 K的反应温度下可能不会获得高a(C)的效果。另一方面,在流动NH3气体的情况下,NH3气体的离解程度将取决于NH3气流沿流路的位置(即,从上游侧流向NH3时不可避免地会上升)。下游侧)以及NH3气体流量(即,流路中特定位置的a会随着NH3气体流量的减小而上升)。另一方面,已经采用冷却速度达到106 K / s的快速凝固工艺来细化合金的微观结构和扩展溶解度极限以及形成非晶相。快速凝固被认为是高温微观结构的超快速淬火过程,或更准确地说,是通过以极高的速率提取热量以抑制原子扩散过程达到固有平衡状态,从而使多组分系统在熔融态下保持原子构型。定义为温度T和合金成分的唯一函数。另一方面,在使用聚光的太阳能束作为反应热源的太阳能炉的某些操作模式下,实现了从环境温度在大约一秒或更短的时间内快速加热到大约2000 K的反应温度。在这种太阳能炉的工作模式下,由钨(W)合成碳化物时,作者通过参考加工过程中可用的平衡二元W-C相图,检测到形成了W m C n相的证据,该相与预期相不符。温度。该实验证据在具有不同m / n比的WmCn相之间的微小能量差异方面得到了暂时的认可。即,一旦在W / C粉末混合物的快速加热过程中形成一定的W mCn相,即使形成的相在T处不是真正的平衡相,也不会转变成真正的平衡相,即使在加工温度T下,该相也将保持稳定。由于从亚稳态相W m C n到真正的平衡相W m C n的相变的驱动力较小,所以在指定的T处处于最大。因此,有意使用化学物种或加工路线偏离平衡状态可能很实用,对于合成给定化学组成的新型化合物而言,这种化合物不能单独使用稳定的化学成分或准平衡加工路线通过反应制备。从广义的观点出发,综合综述了不稳定化学物质(非石墨碳,未裂解的氨气)和非平衡反应路线(超快冷却/加热)对反应产物的性质(化学组成,微观结构)的作用。非平衡态用于合成新型反应产物

著录项

  • 作者

    Shohoji Nobumitsu;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号