首页> 外文OA文献 >Influence of microphysical schemes on atmospheric water in the Weather Research and Forecasting model
【2h】

Influence of microphysical schemes on atmospheric water in the Weather Research and Forecasting model

机译:微观物理方案对天气研究和预报模型中大气水的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study examines how different microphysical parameterization schemes influence orographically induced precipitation and the distributions of hydrometeors and water vapour for midlatitude summer conditions in the Weather Research and Forecasting (WRF) model. A high-resolution two-dimensional idealized simulation is used to assess the differences between the schemes in which a moist air flow is interacting with a bell-shaped 2 km high mountain. Periodic lateral boundary conditions are chosen to recirculate atmospheric water in the domain. It is found that the 13 selected microphysical schemes conserve the water in the model domain. The gain or loss of water is less than 0.81% over a simulation time interval of 61 days. The differences of the microphysical schemes in terms of the distributions of water vapour, hydrometeors and accumulated precipitation are presented and discussed. The Kessler scheme, the only scheme without ice-phase processes, shows final values of cloud liquid water 14 times greater than the other schemes. The differences among the other schemes are not as extreme, but still they differ up to 79% in water vapour, up to 10 times in hydrometeors and up to 64% in accumulated precipitation at the end of the simulation. The microphysical schemes also differ in the surface evaporation rate. The WRF single-moment 3-class scheme has the highest surface evaporation rate compensated by the highest precipitation rate. The different distributions of hydrometeors and water vapour of the microphysical schemes induce differences up to 49 W m−2 in the downwelling shortwave radiation and up to 33 W m−2 in the downwelling longwave radiation.
机译:这项研究探讨了在天气研究与预报(WRF)模型中,不同的微物理参数化方案如何影响地形诱发的降水以及中纬度夏季条件下水汽和水汽的分布。高分辨率二维理想化仿真用于评估方案之间的差异,在方案之间,潮湿的气流与钟形的2 km高山相互作用。选择周期性的横向边界条件以使区域内的大气水再循环。发现在模型域中选择的13种微物理方案可节约用水。在61天的模拟时间间隔内,水的获得或损失少于0.81%。介绍并讨论了微观物理方案在水蒸气,水凝物和累积降水量方面的差异。凯斯勒方案是唯一没有冰期过程的方案,其云水的最终值比其他方案大14倍。在其他方案之间的差异不是那么大,但是在模拟结束时,它们在水蒸气方面的差异最大为79%,在水流计方面的差异最大为10倍,在累积降水量方面的差异最大为64%。微观物理方案在表面蒸发速率上也不同。 WRF单矩3类方案具有最高的表面蒸发速率,并由最高的降水速率补偿。微观物理方案中水凝物和水蒸气的不同分布在下波短波辐射中引起的差异高达49 W m-2,而在下波长波辐射中引起的差异高达33 W m-2。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号