首页> 外文OA文献 >Computational and experimental investigations of forces in protein folding
【2h】

Computational and experimental investigations of forces in protein folding

机译:蛋白质折叠力的计算和实验研究

摘要

Properly folded proteins are necessary for all living organisms. Incorrectly folded proteins can lead to a variety of diseases such as Alzheimer?s Disease or Bovine Spongiform Encephalitis (Mad Cow Disease). Understanding the forces involved in protein folding is essential to the understanding and treatment of protein misfolding diseases. When proteins fold, a significant amount of surface area is buried in the protein interior. It has long been known that burial of hydrophobic surface area was important to the stability of the folded structure. However, the impact of burying polar surface area is not well understood. Theoretical results suggest that burying polar groups decreases the stability, but experimental evidence supports the belief that polar group burial increases the stability. Studies of tyrosine to phenylalanine mutations have shown the removal of the tyrosine OH group generally decreases stability. Through computational investigations into the effect of buried tyrosine on protein stability, favorable van der Waals interactions are shown to correlate with the change in stability caused by replacing the tyrosine with phenylalanine to remove the polar OH group. Two large-scale studies on nearly 1000 high-resolution x-ray structures are presented. The first investigates the electrostatic and van der Waals interactions, analyzing the energetics of burying various atom groups in the protein interior. The second large-scale study analyzes the packing differences in the interior of the protein and shows that hydrogen bonding increases packing, decreasing the volume of a hydrogen bonded backbone by about 1.5 ?3 per hydrogen bond. Finally, a structural comparison between RNase Sa and a variant in which five lysines replaced five acidic groups to reverse the net charge is presented. It is shown that these mutations have a marginal impact on the structure, with only small changes in some loop regions.
机译:正确折叠的蛋白质对于所有活生物都是必需的。折叠不正确的蛋白质会导致多种疾病,例如老年痴呆症或牛海绵状脑炎(疯牛病)。了解蛋白质折叠所涉及的力量对于理解和治疗蛋白质错误折叠疾病至关重要。当蛋白质折叠时,大量的表面积被埋在蛋白质内部。早就知道,埋藏疏水表面积对折叠结构的稳定性很重要。但是,掩埋极性表面积的影响尚不十分清楚。理论结果表明,掩埋极性基团会降低稳定性,但实验证据支持这样的观点,即极性基团埋葬会增加稳定性。酪氨酸至苯丙氨酸突变的研究表明,酪氨酸OH基团的去除通常会降低稳定性。通过对掩埋酪氨酸对蛋白质稳定性影响的计算研究,显示出良好的范德华相互作用与通过用苯丙氨酸替代酪氨酸去除极性OH基团引起的稳定性变化有关。提出了将近1000种高分辨率X射线结构的两项大规模研究。第一个研究了静电和范德华相互作用,分析了将各种原子团掩埋在蛋白质内部的能量学。第二项大规模研究分析了蛋白质内部的堆积差异,结果表明氢键增加了堆积,使每个氢键的氢键主链体积减少了约1.5?3。最后,提出了RNase Sa与一种变体之间的结构比较,其中五个赖氨酸替代了五个酸性基团以逆转净电荷。结果表明,这些突变对结构的影响很小,在某些环区域只有很小的变化。

著录项

  • 作者

    Schell David Andrew;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号