首页> 外文OA文献 >Type II Aerobic Methane Oxidizing Bacteria (AMOB) Drive Methane Oxidation in Pulsed Wetlands as Indicated by 13C-Phospholipid Fatty Acid Composition
【2h】

Type II Aerobic Methane Oxidizing Bacteria (AMOB) Drive Methane Oxidation in Pulsed Wetlands as Indicated by 13C-Phospholipid Fatty Acid Composition

机译:II型好氧甲烷氧化细菌(AMOB)驱动脉冲湿地中的甲烷氧化,如13C-磷脂脂肪酸组成所示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Methane (CH4) is a potent greenhouse gas and management strategies have been proposed to limit CH4 emissions from freshwater wetlands. The methanotrophic bacteria can intercept much of the CH4 produced by methanogenic archaea and thus management protocols for wetlands could conceivably include manipulations not only to limit the production of CH4 by methanogens, but also to enhance the consumption of CH4 by benthic or planktonic methanotrophs. The hydrological characteristic of a wetland is a major determinant of the CH4 emission rates. A major consideration for CH4 production is whether a wetland is static or flowing (wetlands connected to rivers and streams). Very little is known about the effects of hydrologic pulsing on wetland carbon dynamics and especially CH4 oxidation. Furthermore, although it has been established that methanotrophs are very active at the oxic sediment water interface of wetlands, little is known about the ecology of methanotrophs in the “pulsing fringe”. Stable isotope probing (SIP) of biomarker Phospholipid Fatty Acids provide a means to connect CH4 oxidation to specific methanotrophs and track the shifts in community structure. Three landscape treatments were: 1) upland aerobic soil, 2) the intermediately flooded zone, and 3) the permanently flooded site with two landscape level replicates in a freshwater pulsing experimental wetlands at the Olentangy River Wetland (ORW) Research Park, The Ohio State University, Columbus. Two soil depths (organic horizon, 0-8 cm that includes the oxidized layer in flooded sites and 8-16 cm depth of surface mineral layer) were sampled at each site four times/year over a two-year period (early spring, mid summer, early fall and mid winter). Immediately after sampling the samples are stored at -20° C and transported under dry ice to the Soil Microbial Ecology Lab, SENR, the Ohio State University, Columbus for analysis. Samples were taken back to the lab to determine potential CH4 oxidation and 13C-PLFA analyses after extraction and analysis on GC-C-IRMS.The PF sites had significantly higher (p<0.05) Potential Methane Oxidation (PMO) than the IF sites. PMO rates at 0-8 cm depth of soil were significantly higher than those at depth of 8-16 cm (p<0.05). PMO in Winter was also significantly higher than in Summer (p< 0.01). PLFA profiling of methanotrophs showed that the Type type II methanotrophs and I methanotrophs were more pronounced in winter that was highly correlated by the seasonal dynamics of PMO. Concentrations of the Type II methanotroph PLFA biomarker (18:ω8c, 18:ω9c and 18:ω7c) were significantly higher (p<0.05) than the Type I PLFA biomarkers (16:ω5c).The highest potential to oxidize the substrate-available methane in the Permanently Flooded site is entirely attributed to the methanotrophic population (as reflected by the relative abundance of the signature PLFAs). Even if with very low 13C incorporation, the PLFA profile in the Intermittently Flooded site is dominated by the Type II methanotrophs.
机译:甲烷(CH4)是一种强大的温室气体,已经提出了管理策略以限制淡水湿地中的CH4排放。甲烷营养细菌可以截获甲烷化古生菌产生的大部分CH4,因此,对湿地的管理规程可以设想包括不仅限制甲烷源甲烷产生CH4的操作,而且可以增加底栖或浮游甲烷营养菌对CH4的消耗。湿地的水文特征是CH4排放速率的主要决定因素。 CH4生产的主要考虑因素是湿地是静态的还是流动的(与河流和溪流相连的湿地)。关于水文脉冲对湿地碳动力学尤其是CH4氧化的影响知之甚少。此外,尽管已经确定甲烷异养菌在湿地的含氧沉积物水界面非常活跃,但对“脉动条纹”中甲烷异养菌的生态学知之甚少。稳定同位素标记生物脂肪酸的探测(SIP)提供了一种手段,可以将CH4氧化与特定的甲烷营养菌联系起来,并跟踪群落结构的变化。三种景观处理方法是:1)高地好氧土壤,2)中度淹水区,3)在俄亥俄州Olentangy河湿地(ORW)研究园的淡水脉动实验湿地中具有两个景观水平复制品的永久淹水点,具有两个景观水平哥伦布大学。在两年期间(春季初,春季初),每年每个地点两次采样两次土壤深度(有机层,包括淹没地点的氧化层的0-8厘米,表层矿物层的深度为8-16厘米)。夏季,初秋和冬季中期)。采样后立即将样品储存在-20°C并在干冰下运输到哥伦布俄亥俄州立大学SENR的土壤微生物生态实验室进行分析。提取样品并在实验室进行GC-C-IRMS分析后,将样品带回实验室以确定潜在的CH4氧化和13C-PLFA分析.PF位点的甲烷潜在氧化度(PMO)明显高于IF位点(p <0.05)。土壤0-8 cm处的PMO率显着高于8-16 cm处的PMO(p <0.05)。冬季的PMO也显着高于夏季(p <0.01)。甲烷营养生物的PLFA分析表明,II型甲烷营养生物和I型甲烷营养生物在冬季更为明显,这与PMO的季节动态高度相关。 II型甲烷营养生物PLFA生物标志物(18:ω8c,18:ω9c和18:ω7c)的浓度显着高于I型PLFA生物标志物(16:ω5c)(p <0.05)。氧化底物的潜力最高永久淹没站点中的甲烷完全归因于甲烷营养种群(通过签名PLFA的相对丰度反映)。即使13 C的掺入量很低,间歇性淹水区的PLFA剖面仍以II型甲烷营养生物为主。

著录项

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号