首页> 外文OA文献 >Mechanistic Analysis of Hydroarylation Catalysts
【2h】

Mechanistic Analysis of Hydroarylation Catalysts

机译:加氢基化催化剂的机理分析

摘要

Recently, two organometallic systems ([Ir(μ-acac-O)(acac-O,O)(acac-C^3)]_2 and (Tp)Ru(CO)(Ph)(NCCH_3)) have been discovered that catalyze hydroarylation of unactivated olefins. Herein, we use density functional theory (B3LYP) to study the factors underlying this class of catalysts. In addition, we calculate the key steps for Rh, Pd, Os, and Pt with similar ligand sets. We previously showed there to be two key steps in the process:  (i) insertion of a phenyl into the π bond of a coordinating olefin, and (ii) C−H activation/hydrogen transfer of an unactivated benzene. An important discovery in these studies is that the barriers for these two steps are inversely correlated, complicating optimization of the overall process. However, herein we elucidate the causes of this inverse correlation, laying the foundation for the rational design of improved catalysts. Both steps are directly influenced by the accessibility of the higher 2-electron oxidation state, M^n → M^(n+2). Systems with an easily accessible M^(n+2) state activate C−H bonds easily but suffer from high energy insertions due to significant back-bonding. Conversely, systems without an easily accessible M^(n+2) state have no debilitating back-bonding which makes insertion steps facile, but cannot effectively activate the C−H bond (leading instead to polymerization). The relationship between accessibility of the M^(n+2) state and the amount of back-bonding in the coordinating olefin can be visualized by inspecting the hybridization of the coordinating olefin. Furthermore, we find a linear relation between this hybridization and the barrier to insertion. On the basis of these concepts, we suggest some modifications of the σ framework expected to improve the rates beyond this linear correlation.
机译:最近,发现了两个有机金属体系([Ir(μ-acac-O)(acac-O,O)(acac-C ^ 3)] _ 2和(Tp)Ru(CO)(Ph)(NCCH_3)),催化未活化烯烃的加氢芳基化反应。在本文中,我们使用密度泛函理论(B3LYP)研究这类催化剂的基础因素。此外,我们计算了具有相似配体集的Rh,Pd,Os和Pt的关键步骤。我们先前证明了该过程中有两个关键步骤:(i)将苯基插入配位烯烃的π键中,以及(ii)未活化的苯的CH活化/氢转移。这些研究中的一个重要发现是,这两个步骤的障碍成反比,从而使整个过程的优化复杂化。然而,本文我们阐明了这种反相关的原因,为合理设计改进的催化剂奠定了基础。这两个步骤都直接受到较高的2电子氧化态M ^ n→M ^(n + 2)的可及性的影响。具有易于访问的M ^(n + 2)状态的系统很容易激活C H键,但由于明显的反向键合而遭受高能量插入。相反,没有容易获得的M ^(n + 2)状态的系统没有破坏性的后键结合,这使插入步骤变得容易,但不能有效地激活C-H键(导致聚合)。通过检查配位烯烃的杂化,可以使M ^(n + 2)状态的可及性与配位烯烃中的背键数量之间的关系可视化。此外,我们发现这种杂交与插入障碍之间存在线性关系。在这些概念的基础上,我们建议对σ框架进行一些修改,以期提高速率,使其超出线性相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号