首页> 外文期刊>ACS catalysis >Mechanistic Analysis-Guided Pd-Based Catalysts for Efficient Hydrogen Production from Formic Acid Dehydrogenation
【24h】

Mechanistic Analysis-Guided Pd-Based Catalysts for Efficient Hydrogen Production from Formic Acid Dehydrogenation

机译:基于机械分析引导的Pd基催化剂,用于甲酸脱氢的高效氢气产生

获取原文
获取原文并翻译 | 示例
           

摘要

Heterogeneous catalysis of formic acid dehydrogenation at room temperature is a promising tactic for safely storing and producing H-2 as an efficient energy carrier. Up to now, the catalysts for this purpose are largely developed based on trial and error. In this work, we demonstrate that a careful analysis of the formic acid dehydrogenation mechanism can shed light on rational design and facile synthesis of efficient Pd-based catalysts, that is, carbon black-supported fine Pd nanoparticles with adatoms of an sp metal (including but not limited to Bi). In fact, Pd@Bi/C with an optimal atomic ratio doubles the Pd mass activity of the Pd/C in terms of hydrogen production rate, specifically with a global turnover frequency of 4350 h(-1) at 303 K in a mixed 1.1 M formic acid and 2.4 M sodium formate solution without engineering the catalyst support. Apparent kinetic measurement, in situ interfacial IR spectroscopy, and density functional theory calculation results further confirm that Bi adatoms favor the adsorption of the formate intermediate to facilitate the C-H bond cleavage and weaken the adsorption of H and CO on Pd sites, resulting in a prominently enhanced H-2 production performance.
机译:在室温下甲酸脱氢的异质催化是一种有助于安全地储存和生产H-2作为有效能量载体的策略。到目前为止,该目的的催化剂基于试验和误差来大量开发。在这项工作中,我们证明了对甲酸脱氢机理的仔细分析可以脱光在合理的设计和体内合成的有效PD基催化剂上,即炭黑负载的细Pd纳米颗粒,其具有SP金属的adatoms(包括但不限于bi)。事实上,Pd @ Bi / C具有最佳原子比在氢气产生速率方面使PD / C的PD质量活性翻倍,特别是在混合1.1中以303 k的全局周转频率为4350小时(-1) M甲酸和2.4M甲酸钠溶液,无需工程催化剂载体。表观动力学测量,原位界面IR光谱和密度函数理论计算结果进一步证实了BI的吸附有利于甲酸甲酸酯中间体的吸附,促进CH键切割并削弱H和CO在Pd位点的吸附,导致突出的增强了H-2生产性能。

著录项

  • 来源
    《ACS catalysis》 |2020年第6期|共12页
  • 作者单位

    Fudan Univ Collaborat Innovat Ctr Chem Energy Mat Dept Chem Shanghai Key Lab Mol Catalysis &

    Innovat Mat Shanghai 200433 Peoples R China;

    Fudan Univ Collaborat Innovat Ctr Chem Energy Mat Dept Chem Shanghai Key Lab Mol Catalysis &

    Innovat Mat Shanghai 200433 Peoples R China;

    Fudan Univ Collaborat Innovat Ctr Chem Energy Mat Dept Chem Shanghai Key Lab Mol Catalysis &

    Innovat Mat Shanghai 200433 Peoples R China;

    Chinese Acad Sci Changchun Inst Appl Chem State Key Lab Rare Earth Resource Utilizat Changchun 130022 Peoples R China;

    Fudan Univ Collaborat Innovat Ctr Chem Energy Mat Dept Chem Shanghai Key Lab Mol Catalysis &

    Innovat Mat Shanghai 200433 Peoples R China;

    Fudan Univ Collaborat Innovat Ctr Chem Energy Mat Dept Chem Shanghai Key Lab Mol Catalysis &

    Innovat Mat Shanghai 200433 Peoples R China;

    Shanghai Jiao Tong Univ Sch Mech Engn Shanghai 200240 Peoples R China;

    ShanghaiTech Univ Ctr High Resolut Electron Microscopy ChEM Sch Phys Sci &

    Technol Shanghai 201210 Peoples R China;

    ShanghaiTech Univ Ctr High Resolut Electron Microscopy ChEM Sch Phys Sci &

    Technol Shanghai 201210 Peoples R China;

    Chinese Acad Sci Changchun Inst Appl Chem State Key Lab Rare Earth Resource Utilizat Changchun 130022 Peoples R China;

    Fudan Univ Collaborat Innovat Ctr Chem Energy Mat Dept Chem Shanghai Key Lab Mol Catalysis &

    Innovat Mat Shanghai 200433 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

    hydrogen storage; formic acid dehydrogenation; irreversible adsorption; palladium-based catalyst; bismuth modification;

    机译:储氢;甲酸脱氢;不可逆的吸附;基于钯的催化剂;铋改性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号