首页> 外文OA文献 >On the structure and origin of pressure fluctuations in wall turbulence: predictions based on the resolvent analysis
【2h】

On the structure and origin of pressure fluctuations in wall turbulence: predictions based on the resolvent analysis

机译:壁湍流中压力波动的结构和成因:基于分解分析的预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We generate predictions for the fluctuating pressure field in turbulent pipe flow byudreformulating the resolvent analysis of McKeon and Sharma (J. Fluid Mech., vol. 658,ud2010, pp. 336–382) in terms of the so-called primitive variables. Under this analysis,udthe nonlinear convective terms in the Fourier-transformed Navier–Stokes equationsud(NSE) are treated as a forcing that is mapped to a velocity and pressure response byudthe resolvent of the linearized Navier–Stokes operator. At each wavenumber–frequencyudcombination, the turbulent velocity and pressure field are represented by theudmost-amplified (rank-1) response modes, identified via a singular value decompositionudof the resolvent. We show that these rank-1 response modes reconcile many of theudkey relationships among the velocity field, coherent structure (i.e. hairpin vortices),udand the high-amplitude wall-pressure events observed in previous experiments anduddirect numerical simulations (DNS). A Green’s function representation shows thatudthe pressure fields obtained under this analysis correspond primarily to the fastudpressure contribution arising from the linear interaction between the mean shear andudthe turbulent wall-normal velocity. Recovering the slow pressure requires an explicitudtreatment of the nonlinear interactions between the Fourier response modes. Byudconsidering the velocity and pressure fields associated with the triadically consistentudmode combination studied by Sharma and McKeon (J. Fluid Mech., vol. 728, 2013,udpp. 196–238), we identify the possibility of an apparent amplitude modulation effect inudthe pressure field, similar to that observed for the streamwise velocity field. However,udunlike the streamwise velocity, for which the large scales of the flow are in phaseudwith the envelope of the small-scale activity close to the wall, we expect there to beuda π/2 phase difference between the large-scale wall-pressure and the envelope of theudsmall-scale activity. Finally, we generate spectral predictions based on a rank-1 modeludassuming broadband forcing across all wavenumber–frequency combinations. Despiteudthe significant simplifying assumptions, this approach reproduces trends observedudin previous DNS for the wavenumber spectra of velocity and pressure, and for theudscale-dependence of wall-pressure propagation speed.
机译:通过对麦肯和夏尔马(J. Fluid Mech。,第658卷, ud2010,第336–382页)的解析解分析,用所谓的原始形式,对湍流中的脉动压力场进行了预测。变量。在此分析下, udiered变换的Navier–Stokes方程中的非线性对流项 ud(NSE)被视为由线性Navier–Stokes算子的解析器映射到速度和压力响应的强迫。在每个波数-频率组合中,湍流速度和压力场由最大放大(rank-1)响应模式表示,该模式通过分辨力的奇异值分解 ud识别。我们表明,这些1级响应模式调和了速度场,相干结构(即发夹涡), ud和先前实验和 uddirect数值模拟(DNS)中观察到的高振幅壁压事件之间的许多 udkey关系。 )。 Green的函数表示法表明,根据此分析获得的压力场主要对应于平均剪切力与湍流壁法向速度之​​间的线性相互作用所产生的快速的负压贡献。恢复缓慢的压力需要对傅立叶响应模式之间的非线性相互作用进行显式处理。通过考虑与Sharma和McKeon研究的三重一致 udmode组合相关的速度和压力场(J. Fluid Mech。,第728卷,2013, udpp。196–238),我们确定了出现明显振幅的可能性压力场中的调制效应,类似于沿流速度场所观察到的。但是,与与河流的速度不同,因为大的流动是同相的与小规模活动的包络线接近壁,我们期望在大的流动之间存在π/ 2相差。小规模活动的壁压力和包络线。最后,我们基于秩1模型假定所有波数-频率组合中的宽带强迫生成频谱预测。尽管有显着简化的假设,但该方法仍再现了先前DNS中观察到的趋势,即速度和压力的波数谱以及壁压传播速度与乌德的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号