首页> 外文OA文献 >Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: electron flow through the Q-junction in permeabilized fibers
【2h】

Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: electron flow through the Q-junction in permeabilized fibers

机译:小鼠心脏温度改造线粒体呼吸能力的改造途径控制:电子流过渗透纤维中的Q结

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Fuel substrate supply and oxidative phosphorylation are key determinants of muscle performance. Numerous studies of mammalian mitochondria are carried out (i) with substrate supply that limits electron flow, and (ii) far below physiological temperature. To analyze potentially implicated biases, we studied mitochondrial respiratory control in permeabilized mouse myocardial fibers using high-resolution respirometry. The capacity of oxidative phosphorylation at 37 °C was nearly two-fold higher when fueled by physiological substrate combinations reconstituting tricarboxylic acid cycle function, compared with electron flow measured separately through NADH to Complex I or succinate to Complex II. The relative contribution of the NADH pathway to physiological respiratory capacity increased with a decrease in temperature from 37 to 25 °C. The apparent excess capacity of cytochrome c oxidase above physiological pathway capacity increased sharply under hypothermia due to limitation by NADH-linked dehydrogenases. This mechanism of mitochondrial respiratory control in the hypothermic mammalian heart is comparable to the pattern in ectotherm species, pointing towards NADH-linked mt-matrix dehydrogenases and the phosphorylation system rather than electron transfer complexes as the primary drivers of thermal sensitivity at low temperature. Delineating the link between stress and remodeling of oxidative phosphorylation is important for understanding metabolic perturbations in disease evolution and cardiac protection.
机译:摘要燃料基板供应和氧化磷酸化是肌肉性能的关键决定因素。对哺乳动物线粒体的许多研究进行了(i)与基板供应限制电子流量,(ii)远低于生理温度。为了分析潜在的致病偏见,我们使用高分辨率呼​​吸法研究了透化小鼠心肌纤维中的线粒体呼吸控制。当通过重构三羧酸循环功能的生理基质组合燃料,将氧化磷酸化在37℃下的氧化磷酸化容量接近两倍,与通过NADH分别测量的电子流量,以复合物I或琥珀酸盐至复合II。 NADH途径对生理呼吸能力的相对贡献随着37至25℃的温度降低而增加。由于NADH连接的脱氢酶的限制,细胞色素C氧化酶的表观过剩容量在生理途径容量中急剧增加。在低温哺乳动物心脏中的这种线粒体呼吸控制机制与卵巢物种中的图案相当,指向NADH连接的MT - 基质脱氢酶和磷酸化系统,而不是电子转移络合物作为低温热敏敏感性的初级驱动器。描绘氧化磷酸化的应力和重塑之间的联系对于了解疾病演化和心脏保护的代谢扰动是重要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号