首页> 外文OA文献 >A spatially resolved study of photoelectric heating and C II cooling in the LMC
【2h】

A spatially resolved study of photoelectric heating and C II cooling in the LMC

机译:LMC中光电加热和C II冷却的空间分解研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Context. Photoelectric heating is a dominant heating mechanism for many phases of the interstellar medium. We study this mechanism throughout the Large Magellanic Cloud (LMC).udAims. We aim to quantify the importance of the [C II] cooling line and the photoelectric heating process of various environments in the LMC and to investigate which parameters control the extent of photoelectric heating.udMethods. We use the BICE [C II] map and the Spitzer/SAGE infrared maps. We examine the spatial variations in the efficiency of photoelectric heating: photoelectric heating rate over power absorbed by grains, i.e. the observed [C II] line strength over the integrated infrared emission. We correlate the photoelectric heating efficiency and the emission from various dust constituents and study the variations as a function of H emission, dust temperatures, and the total infrared luminosity. The observed variations are interpreted in a theoretical framework. From this we estimate radiation field, gas temperature, and electron density.udResults. We find systematic variations in photoelectric efficiency. The highest efficiencies are found in the diffuse medium, while the lowest coincide with bright star-forming regions (~1.4 times lower). The [C II] line emission constitutes 1.32% of the far infrared luminosity across the whole of the LMC. We find correlations between the [C II] emission and ratios of the mid infrared and far infrared bands, which comprise various dust constituents. The correlations are interpreted in light of the spatial variations of the dust abundance and by the local environmental conditions that affect the dust emission properties. As a function of the total infrared surface brightness, S_(TIR), the [C II] surface brightness can be described as: S_([C II]) = 1.25 S^(0.69)_(TIR)[10^(-3) erg s^(-1) cm^(-2) sr^(-1)], for S_(TIR) ≳ 3.2 x 10^(-4) erg s^(-1) cm^(-2) sr^(-1). We provide a simple model of the photoelectric efficiency as a function of the total infrared luminosity. We find a power-law relation between radiation field and electron density, consistent with other studies. The [C II] emission is well-correlated with the 8 µm emission, suggesting that the polycyclic aromatic hydrocarbons play a dominant role in the photoelectric heating process.
机译:上下文。光电加热是星际介质许多阶段的主要加热机制。我们在整个麦哲伦星云(LMC)中研究了这种机制。 udAims。我们旨在量化LMC中[C II]冷却线和各种环境下的光电加热过程的重要性,并研究哪些参数控制光电加热的程度。 ud方法。我们使用BICE [C II]地图和Spitzer / SAGE红外地图。我们研究了光电加热效率的空间变化:光电加热速率超过谷物吸收的功率,即相对于整体红外发射观察到的[C II]线强度。我们将光电加热效率与各种粉尘成分的发射相关联,并研究随H发射,粉尘温度和总红外光度变化的变化。观察到的变化在理论框架内进行解释。由此我们可以估算出辐射场,气体温度和电子密度。 udResults。我们发现光电效率存在系统差异。在扩散介质中发现效率最高,而在明亮的恒星形成区域时效率最低(约低1.4倍)。 [C II]线发射占整个LMC的远红外发光度的1.32%。我们发现[C II]发射与中红外波段和远红外波段的比率之间的相关性,其中包括各种粉尘成分。根据粉尘含量的空间变化和影响粉尘排放特性的局部环境条件来解释相关性。作为总红外表面亮度S_(TIR)的函数,[C II]表面亮度可描述为:S _([C II])= 1.25 S ^(0.69)_(TIR)[10 ^(- 3)erg s ^(-1)cm ^(-2)sr ^(-1)],对于S_(TIR)≳3.2 x 10 ^(-4)erg s ^(-1)cm ^(-2) sr ^(-1)。我们提供了一个简单的光电效率模型,该模型是总红外光度的函数。我们发现辐射场与电子密度之间的幂律关系与其他研究一致。 [C II]的发射与8 µm的发射非常相关,这表明多环芳烃在光电加热过程中起着主导作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号