首页> 外文OA文献 >Maximum superheating and undercooling: Systematics, molecular dynamics simulations, and dynamic experiments
【2h】

Maximum superheating and undercooling: Systematics, molecular dynamics simulations, and dynamic experiments

机译:最大程度的过热和过冷:系统学,分子动力学模拟和动态实验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The maximum superheating and undercooling achievable at various heating (or cooling) rates were investigated based on classical nucleation theory and undercooling experiments, molecular dynamics (MD) simulations, and dynamic experiments. The highest (or lowest) temperature Tc achievable in a superheated solid (or an undercooled liquid) depends on a dimensionless nucleation barrier parameter beta and the heating (or cooling) rate Q. beta depends on the material: beta[equivalent]16pigamma/(3kTmDeltaH) where gammasl is the solid-liquid interfacial energy, DeltaHm the heat of fusion, Tm the melting temperature, and k Boltzmann's constant. The systematics of maximum superheating and undercooling were established phenomenologically as beta= (A0–b log10Q)thetac(1–thetac)2 where thetac = Tc/Tm, A0 = 59.4, b = 2.33, and Q is normalized by 1 K/s. For a number of elements and compounds, beta varies in the range 0.2–8.2, corresponding to maximum superheating thetac of 1.06–1.35 and 1.08–1.43 at Q~1 and 10^12 K/s, respectively. Such systematics predict that a liquid with certain beta cannot crystallize at cooling rates higher than a critical value and that the smallest thetac achievable is 1/3. MD simulations (Q~10^12 K/s) at ambient and high pressures were conducted on close-packed bulk metals with Sutton-Chen many-body potentials. The maximum superheating and undercooling resolved from single- and two-phase simulations are consistent with the thetac-beta-Q systematics for the maximum superheating and undercooling. The systematics are also in accord with previous MD melting simulations on other materials (e.g., silica, Ta and epsilon-Fe) described by different force fields such as Morse-stretch charge equilibrium and embedded-atom-method potentials. Thus, the thetac-beta-Q systematics are supported by simulations at the level of interatomic interactions. The heating rate is crucial to achieving significant superheating experimentally. We demonstrate that the amount of superheating achieved in dynamic experiments (Q~10^12 K/s), such as planar shock-wave loading and intense laser irradiation, agrees with the superheating systematics.
机译:基于经典的成核理论和过冷实验,分子动力学(MD)模拟和动态实验,研究了在各种加热(或冷却)速率下可达到的最大过热和过冷。在过热的固体(或过冷的液体)中可达到的最高(或最低)温度Tc取决于无因次成核屏障参数β,加热(或冷却)速率Q。β取决于材料:β[等效16pigamma /( 3kTmDeltaH),其中gammasl是固液界面能,DeltaHm是熔化热,Tm是熔化温度,以及k Boltzmann常数。最大过热和过冷的系统在现象学上被建立为beta =(A0–b log10Q)thetac(1–thetac)2,其中thetac = Tc / Tm,A0 = 59.4,b = 2.33,并且Q以1 K / s归一化。对于许多元素和化合物,β在0.2-8.2范围内变化,分别对应于Q〜1和10 ^ 12 K / s时的最大过热度tac为1.06-1.35和1.08-1.43。这样的系统分析人员预测,具有一定β值的液体无法在高于临界值的冷却速率下结晶,并且可达到的最小tac为1/3。在具有Sutton-Chen多体势的密堆积金属上进行了常压和高压下的MD模拟(Q〜10 ^ 12 K / s)。通过单相和两相模拟得到的最大过热度和过冷度与用于最大过热度和过冷度的thetac-beta-Q系统学一致。该系统还符合以前在其他材料(例如二氧化硅,Ta和ε-Fe)上通过不同的力场(例如莫尔斯拉伸电荷平衡和嵌入的原子方法势)描述的MD熔融模拟。因此,THETAC-β-Q系统学在原子间相互作用的水平上得到了模拟的支持。加热速率对于通过实验实现显着过热至关重要。我们证明了在动态实验(Q〜10 ^ 12 K / s)中实现的过热量,例如平面冲击波载荷和强激光辐照,与过热系统学吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号