首页> 外文OA文献 >Constructing Multifunctional Virus-Templated Nanoporous Composites for Thin Film Solar Cells: Contributions of Morphology and Optics to Photocurrent Generation
【2h】

Constructing Multifunctional Virus-Templated Nanoporous Composites for Thin Film Solar Cells: Contributions of Morphology and Optics to Photocurrent Generation

机译:构建薄膜太阳能电池的多功能病毒模板纳米多孔复合材料:形态学和光学对光电流的贡献

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biotemplates, such as the high aspect ratio M13 bacteriophage, can be used to nucleate noble metal nanoparticles and photoactive materials such as metal oxides, as well as organize them into continuous structures. Such attributes make them attractive scaffolds for solar applications requiring precise organization at the nanoscale. For instance, thin film solar cells benefit from nanostructured morphologies that aid light absorption and carrier transport. Here, we present a biotemplating strategy for assembling nanostructured thin film solar cells that enhance the generated photocurrent through two features: (1) a nanoporous and continuous M13 bacteriophage-templated titania network that improves charge collection and (2) the incorporation of metal nanoparticles within the active layer of the device to improve light harvesting. We demonstrate our ability to construct virus-templated solar cells by applying this strategy to depleted titania–lead sulfide quantum dot (PbS QD) bulk heterojunctions. The titania morphology produced by our biotemplate allows charges to be efficiently collected from the bulk of the active material and light that is otherwise poorly absorbed by the QDs to be harvested using metal nanoparticles that exhibit plasmon resonances in the visible range. We show that high aspect ratio bacteriophages provide a structural template for synthesizing titania networks with tunable porosity, into which PbS QDs are infiltrated to create photoactive nanocomposites suitable for photovoltaics. Upon optimization, the generated photocurrent and power conversion efficiency of the bacteriophage-templated devices demonstrate a 2-fold improvement over those of control devices made with randomly organized titania nanoparticles. When the virus is complexed with gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), or silver nanoplates (Ag NPLs) during assembly, the device performance is further improved, with Ag NPLs enhancing the short-circuit current density and power conversion efficiency by 16% and 36.5%, respectively, over those of virus-based devices without NPs. The observed trends in photocurrent enhancement match well with numerical predictions, and the role of the nanostructured morphology on the device optics was computationally explored. The challenges overcome in this work could be extended to other heterojunction devices, such as hybrid systems involving conducting polymers, as well as other biologically templated electronics.
机译:比例,例如高纵横比M13噬菌体,可用于核心贵金属纳米颗粒和光活性材料,例如金属氧化物,以及将它们组织成连续结构。这些属性使它们为需要在纳米级的精确组织的太阳能应用使其具有吸引力的脚手架。例如,薄膜太阳能电池受益于有助于光吸收和载流子的纳米结构形态。在这里,我们提出了一种组装纳米结构薄膜太阳能电池的生物预算策略,其通过两个特征增强产生的光电流:(1)一种纳米多孔和连续的M13噬菌体模板模型推动电荷收集和(2)在内部金属纳米粒子的掺入装置的有源层,以改善光收获。我们证明了我们通过将该策略应用于耗尽二氧化钛 - 硫化硫化硫醚量子点(PBS QD)散差杂交来构建病毒模板化太阳能电池的能力。由我们的生物板产生的二氧化钛形态允许通过使用在可见范围内的金属纳米颗粒的金属纳米颗粒收获QDS的大部分活性物质和光线有效地收集电荷。我们表明,高纵横比噬菌体提供了用于用可调谐孔隙率合成二氧化钛网络的结构模板,其中PBS QDS被渗透到适于光伏的光活性纳米复合物中。在优化时,噬菌体模板的产生的光电流和功率转换效率表现出用随机组织的二氧化钛纳米粒子制成的控制装置的2倍。当病毒与金纳米颗粒(Au NPS)复合时,组装过程中银纳米颗粒(Ag NPS)或银纳米板(Ag NPLS),通过Ag NPLS增强了短路电流密度和功率转换的器件性能。效率分别在没有NPS的基于病毒的设备上分别为16%和36.5%。观察到的光电流增强趋势与数值预测匹配良好,并且纳米结构形态对设备光学的作用是在计算上探索的。在这项工作中克服的挑战可以扩展到其他异质结装置,例如涉及导电聚合物的混合系统,以及其他生物模板化电子器件。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号