首页> 外文OA文献 >Core-scale sensitivity study of CO2 foam injection strategies for mobility control, enhanced oil recovery, and CO2 storage
【2h】

Core-scale sensitivity study of CO2 foam injection strategies for mobility control, enhanced oil recovery, and CO2 storage

机译:迁移率控制,增强的采油和CO2储存的CO2泡沫注射策略核心敏感性研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents experimental and numerical sensitivity studies to assist injection strategy design for an ongoing CO2 foam field pilot. The aim is to increase the success of in-situ CO2 foam generation and propagation into the reservoir for CO2 mobility control, enhanced oil recovery (EOR) and CO2 storage. Un-steady state in-situ CO2 foam behavior, representative of the near wellbore region, and steady-state foam behavior was evaluated. Multi-cycle surfactant-alternating gas (SAG) provided the highest apparent viscosity foam of 120.2 cP, compared to co-injection (56.0 cP) and single-cycle SAG (18.2 cP) in 100% brine saturated porous media. CO2 foam EOR corefloods at first-contact miscible (FCM) conditions showed that multi-cycle SAG generated the highest apparent foam viscosity in the presence of refined oil (n-Decane). Multi-cycle SAG demonstrated high viscous displacement forces critical in field implementation where gravity effects and reservoir heterogeneities dominate. At multiple-contact miscible (MCM) conditions, no foam was generated with either injection strategy as a result of wettability alteration and foam destabilization in presence of crude oil. In both FCM and MCM corefloods, incremental oil recoveries were on average 30.6% OOIP regardless of injection strategy for CO2 foam and base cases (i.e. no surfactant). CO2 diffusion and miscibility dominated oil recovery at the core-scale resulting in high microscopic CO2 displacement. CO2 storage potential was 9.0% greater for multi-cycle SAGs compared to co-injections at MCM. A validated core-scale simulation model was used for a sensitivity analysis of grid resolution and foam quality. The model was robust in representing the observed foam behavior and will be extended to use in field scale simulations.
机译:本文介绍了实验性和数值敏感性研究,以帮助持续的CO2泡沫场飞行员注射策略设计。目的是将原位二氧化碳泡沫产生的成功提高到CO 2迁移率控制,增强的储油(EOR)和CO2储存中的储层中的成功。评估了不稳态的原位二氧化碳泡沫行为,代表接近井筒区域和稳态泡沫行为。多循环表面活性剂 - 交替气体(SAG)提供了120.2cp的最高表观粘度泡沫,与共注射(56.0cp)和100%盐水饱和多孔介质中的单循环下垂(18.2cp)相比。 FIRT接触混溶性(FCM)条件下的CO2泡沫eOR COREFLOOD显示,在精制油(N-癸烷)存在下,多循环凹陷产生最高的表观泡沫粘度。多循环凹陷显示出高粘性位移力在现场实施中至关重要,其中重力效应和储层异质性占主导地位。在多触点混溶(MCM)条件下,由于在原油存在下,由于润湿性改变和泡沫稳定化而没有产生泡沫。在FCM和MCM CoreFloods中,无论CO 2泡沫和基础病例的注射策略,增量油回收率平均平均为30.6%OOIP(即没有表面活性剂)。 CO2扩散和混溶性在核心级中的油回收导致高显微镜CO2位移。与MCM的共注入相比,CO2储存电位为多循环凹槽较大9.0%。经过验证的核心级仿真模型用于电网分辨率和泡沫质量的灵敏度分析。该模型在代表观察到的泡沫行为方面是强大的,并且将扩展到用于现场比例模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号