首页> 外文OA文献 >Shallow water simulations of Saturn's giant storms at different latitudes
【2h】

Shallow water simulations of Saturn's giant storms at different latitudes

机译:不同纬度地区土星巨型风暴的浅水模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Shallow water simulations are used to present a unified study of three major storms on Saturn (nicknamed as Great White Spots, GWS) at different latitudes, polar (1960), equatorial (1990), and mid-latitude (2010) (Sánchez-Lavega, 2004; Sánchez-Lavega et al., 2011). In our model, the three GWS are initiated by introducing a Gaussian function pulse at the latitude of the observed phenomena with controlled horizontal size and amplitude. This function represents the convective source that has been observed to trigger the storm. A growing disturbance forms when the pulse reacts to ambient winds, expanding zonally along the latitude band of the considered domain. We then compare the modeled potential vorticity with the cloud field, adjusting the model parameters to visually get the closest aspect between simulations and observations. Simulations of the 2010 GWS (planetographic latitude ~+40º, zonal velocity of the source ~-30 m s-1) indicate that the Coriolis forces and the wind profile structure shape the disturbance generating, as observed, a long region to the east of the convective source with a high speed peripheral anticyclonic circulation, and a long-lived anticyclonic compact vortex accompanied by strong zonal advection on the southern part of the storm forming a turbulent region. Simulations of the equatorial 1990 GWS (planetographic latitude +12º-+5º, zonal velocity of the source 365-400 m s-1) show a different behavior because of the intense eastward jet, meridional shear at the equatorial region, and low latitude dynamics. A round shaped source forms as observed, with the rapid growth of a Kelvin-Helmholtz instability on the north side of the source due to advection and to the strong meridional wind shear, whereas at the storm latitude the disturbance grows and propagates eastward. The storm nucleus is the manifestation of a Rossby wave, while the eastward propagating planetary-scale disturbance is a gravity-Rossby wave trapped around the equator. The simulated 1960 GWS disturbance (planetographic latitude +56º, zonal velocity 4 m s-1) formed a chain of periodic oval spots that mimic the few available observations of the phenomenon. For the mid and high latitude storms, simulations predict a strong injection of negative relative vorticity due to divergence of the upwelling storm material, which may produce large anticyclones on the anticyclonic side of the zonal profile, and a quick turbulent expansion on the background cyclonic regions. In general, simulations indicate that negative relative vorticity injected by storms determines the natural reaction to zonal winds at latitudes where Coriolis forces are dominant.
机译:浅水模拟用于在不同纬度,极地(1960),赤道(1990)和中纬度(2010)(Sánchez-Lavega)(Sánchez-Lavega)统一研究土星(绰号为伟大的白色斑点,GWS)的统一研究,2004;sánchez-lavega等。,2011)。在我们的模型中,通过在观察到的现象的纬度下引入具有受控水平尺寸和幅度的纬度来启动三个GW。此功能表示已被观察到触发风暴的对流源。当脉冲反应到环境风的反应时,形成不断增长的扰动,沿着所考虑结构域的纬度频带扩展。然后,我们将模型的潜在涡卷与云字段进行比较,调整模型参数,以便在视觉上获得模拟和观察之间最接近的方面。 2010 GWS的模拟(速度〜+40º,源〜-30 m S-1的划分速度)表明科里奥利力和风轮廓结构造成干扰发生,如观察到的长区域具有高速外围反气旋循环的对流源,以及长寿命的反气旋紧凑型涡流,伴随着形成湍流区域的风暴南部的强烈区域平流。赤道1990GWS(速度+12º-+5º,源365-400m S-1的划分速度)的模拟显示出不同的行为,因为赤道区域的激烈的东部射流,并在静止地区的子午线剪切和低纬度动态。观察到的圆形源形式,随着源头的北侧的北侧的快速增长,由于平流和强大的子午线剪切,而在风暴纬度下,扰动向东传播并传播。风暴核是Rossby波的表现,而东方传播行星级扰动是围绕赤道捕获的重力 - rossby波。模拟的1960 GWS扰动(行星纬度+56º,Zonal Velocity 4 M S-1)形成了一根周期性椭圆形斑点,其模仿现象的少数可用观察。对于中高纬度的风暴,模拟预测由于升高的风暴材料的分歧引起的强烈注射负相对涡旋,这可能会在带状曲线剖面上产生大型的反气旋,以及在背景旋转区域的快速湍流膨胀。通常,模拟表明风暴注射的负相对涡度决定了对纬度的纬度的自然反应,其中科里奥利力是显性的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号