首页> 外文OA文献 >Entanglement of single-atom quantum bits at a distance
【2h】

Entanglement of single-atom quantum bits at a distance

机译:距离单个原子量子位的缠结

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quantum information science involves the storage, manipulation and communication of information encoded in quantum systems, where the phenomena of superposition and entanglement can provide enhancements over what is possible classically(1,2). Large-scale quantum information processors require stable and addressable quantum memories, usually in the form of fixed quantum bits ( qubits), and a means of transferring and entangling the quantum information between memories that may be separated by macroscopic or even geographic distances. Atomic systems are excellent quantum memories, because appropriate internal electronic states can coherently store qubits over very long timescales. Photons, on the other hand, are the natural platform for the distribution of quantum information between remote qubits, given their ability to traverse large distances with little perturbation. Recently, there has been considerable progress in coupling small samples of atomic gases through photonic channels(2,3), including the entanglement between light and atoms(4,5) and the observation of entanglement signatures between remotely located atomic ensembles(6) (-8). In contrast to atomic ensembles, single-atom quantum memories allow the implementation of conditional quantum gates through photonic channels2,9, a key requirement for quantum computing. Along these lines, individual atoms have been coupled to photons in cavities(2,10-12), and trapped atoms have been linked to emitted photons in free space(13-17). Here we demonstrate the entanglement of two fixed single-atom quantum memories separated by one metre. Two remotely located trapped atomic ions each emit a single photon, and the interference and detection of these photons signals the entanglement of the atomic qubits. We characterize the entangled pair by directly measuring qubit correlations with near-perfect detection efficiency. Although this entanglement method is probabilistic, it is still in principle useful for subsequent quantum operations and scalable quantum information applications(18-20).
机译:量子信息科学涉及在量子系统中编码的信息的存储,操纵和通信,其中叠加和缠结的现象可以提供经典可能的增强(1,2)。大规模量子信息处理器需要稳定且可寻址的量子存储器,通常以固定量子位(QUBITS)的形式,以及在可以通过宏观或甚至地理距离分开的存储器之间传递和缠绕的量子信息的装置。原子系统是优异的量子存储器,因为适当的内部电子状态可以在很长的时间内穿透地存储额度。另一方面,光子是远程贵族之间的量子信息分布的自然平台,鉴于它们的扰动扰动的大距离。最近,在通过光子通道(2,3)耦合的小样品(2,3),包括光和原子(4,5)之间的缠结以及远程定位原子合奏(6)之间的缠结签名观察(6)( -8)。与原子集合相比,单个原子量子存储器允许通过光子通道2,9实现条件量子栅极,这是量子计算的关键要求。沿着这些线,单个原子已经耦合到空腔(2,10-12)中的光子,并且截留的原子已与自由空间(13-17)中的发射光子连接。在这里,我们展示了两个固定的单个原子量子存储器分隔的纠缠。两个远程定位的被截留的原子离子每次发射单个光子,并且这些光子的干扰和检测表示原子QUBITS的缠结。我们通过直接测量与接近完美检测效率的QUBBit相关性来表征纠缠的对。虽然这种纠缠方法是概率,但它仍然原则上用于随后的量子操作和可伸缩量子信息应用(18-20)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号