首页> 外文OA文献 >GENERATION OF THE UNSTRUCTURED FE-GRIDS FOR COMPLEX 2D OBJECTS/NESTRUKTŪRINIŲ BE TINKLŲ GENERAVIMAS SUDĖTINGIEMS DVIMAČIAMS OBJEKTAMS
【2h】

GENERATION OF THE UNSTRUCTURED FE-GRIDS FOR COMPLEX 2D OBJECTS/NESTRUKTŪRINIŲ BE TINKLŲ GENERAVIMAS SUDĖTINGIEMS DVIMAČIAMS OBJEKTAMS

机译:为复杂的2D对象/非结构的非结构的FE-GRID生成没有网络的复杂二维物体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For the numerical simulation of engineering problems, the finite element method (FEM) is among the most popular approaches. One of the main concerns in a finite element analysis is the adequacy of the finite element grid. The accuracy of the FEM depends on the size, shape and placement of the elements. On the other hand, the total computational cost is determined by the total number of elements in FE model. An increased accuracy can be obtained by the global reduction of the element size, but this can be characterised by drastically increased computational cost. Thus, in many engineering applications it is desirable to generate not regular FE mesh with finer grid in the regions where accuracy of numerical simulation is of most importance and with more coarse grid in the other regions.In this paper we present a new approach to the grid generation of the multimaterial or multidomain engineering systems by the advancing front technique. This technique has proved successful in generating unstructured meshes in two and three dimensions [1–9]. The algorithm of the technique is summarised in section 2. Common for all approaches of advancing front mesh generation is that the generation problem is divided into three parts. First, the specification of the mesh size attributes, second, the discretisation of the boundaries, and, third, the discretisation of the interior of the domain. In the advancing front technique the front is defined as the boundary between the gridded and ungridded region. The key algorithmic step that must be addressed to advancing front methods is the proper introduction of new elements into the ungridded region. For triangular and tetrahedral grids the elements are introduced sequentially one at a time. The most obvious advantage of the advancing front method is that it directly incorporates free form geometry.Direct implementation of the advancing front technique for multimaterial or multidomain engineering applications is still challenging. Grid generation in the place of few materials or domain contact must ensure the compatibility of nodes on common boundary segments (nodes on common boundary segments must be in the same positions). The advancing front technique does not include non-convex domain, so at the first step non-convex domain of discretisation is decomposed into few convex subdomains. The subdomain of interest must be defined by describing a course background mesh of triangle elements, covering the entire multidomain region, which forms the input for finite element analysis.In this work, a black box architecture expert system has been developed which incorporates the information about the object geometry as well as the boundary and loading conditions, distribution of materials characteristics to generate an a priori (before the finite element analysis is carried out) mesh which is more refined around the critical regions (singularities, re-entrant corners, regions with high-stress concentration, etc) of the problem domain. This system uses a new concept of subtracting to locate the critical regions in the domain and to assign priority and mesh size to them. This involves the decomposition of the original structure into substructures (or primitives) for which an initial and approximate analysis can be performed by using analytical solutions and heuristics. When incorporated into and compared with the traditional approach to the adaptive finite element analysis, it is expected that the proposed approach, which starts the process with near optimal meshes, will be more accurate and efficient.Several numerical examples are presented and discussed. Examples demonstrate that our approach enables to generate the compatible meshes for multimaterial or multidomain problems. The quality of meshes is good, there are no ill-shaped elements. By the proposed expert system we can generate the mesh for any complex structure. The generation of 2D meshes is only the first step using the proposed expert system; in future we shall extend it for 3D meshes.During the last decade a lot of research has been devoted to extension of the advancing front technique to the parallel computers [8, 10, 11]. But the application of the technique to parallel processors is still challenging. In fact, we have to solve how to minimise inter-processor communication during mesh generation of subdomains. The proposed expert system for complex structures grid generation enables to use it with parallel computers. At the first step the domain of discretisation is decomposed into subdomains and all the surfaces defining the boundaries of subdomains to be gridded are triangulated. Later all subdomains can be meshed concurrently and no more inter-processor communication is required. The master task sends to workers tasks information about dividing common boundaries and information of each subdomain. The workers tasks receive their subdomain data and mesh their subdomain. Later the master receives the information from the workers tasks and joins gridded subdomains to one structure, ensuring the compatibility of nodes on common boundaries. So this suggested expert system enables to minimise the communications and costs of computations. The implementation of the expert system to parallel processors is to be done in the future.First Published Online: 26 Jul 2012
机译:对于工程问题的数值模拟,有限元法 (FEM) 是最流行的方法之一。有限元分析的主要问题之一是有限元网格的充分性。 FEM 的精度取决于元素的大小、形状和位置。另一方面,总计算成本由有限元模型中的元素总数决定。通过整体减小单元尺寸可以获得更高的精度,但这可以通过计算成本急剧增加来表征。因此,在许多工程应用中,希望在数值模拟精度最重要的区域生成具有较细网格的非规则有限元网格,而在其他区域生成较粗的网格。在本文中,我们提出了一种通过先进前沿技术生成多材料或多域工程系统网格的新方法。事实证明,这种技术在生成二维和三维的非结构化网格方面是成功的 [1-9]。该技术的算法在第 2 节中进行了总结。所有推进前网格生成的方法的共同点是生成问题分为三个部分。首先,网格大小属性的规范,其次,边界的离散化,第三,域内部的离散化。在前进前沿技术中,前沿被定义为网格区域和非网格区域之间的边界。推进前沿方法必须解决的关键算法步骤是将新元素正确引入非网格区域。对于三角形和四面体网格,元素一次一个地依次引入。推进前沿方法最明显的优点是它直接结合了自由形式的几何。直接实现多材料或多领域工程应用的前沿技术仍然具有挑战性。在少数材料或域接触的地方生成网格必须确保公共边界段上的节点的兼容性(公共边界段上的节点必须在相同的位置)。前沿技术不包括非凸域,因此在第一步离散化的非凸域被分解为几个凸子域。感兴趣的子域必须通过描述三角形元素的过程背景网格来定义,覆盖整个多域区域,形成有限元分析的输入。在这项工作中,开发了一个黑盒架构专家系统,该系统结合了有关对象几何形状以及边界和载荷条件、材料特性分布的信息,以生成先验(在进行有限元分析之前)网格它在问题域的关键区域(奇异点、重入角、高应力集中区域等)周围更加精细。该系统使用减法的新概念来定位域中的关键区域并为其分配优先级和网格大小。这涉及将原始结构分解为子结构(或基元),可以通过使用解析解和启发式对其进行初始和近似分析。当纳入自适应有限元分析的传统方法并与传统方法进行比较时,预计所提出的以接近最佳网格开始过程的方法将更加准确和有效。提出并讨论了几个数值例子。示例表明,我们的方法能够为多材料或多域问题生成兼容的网格。网格质量好,没有畸形元素。通过建议的专家系统,我们可以为任何复杂结构生成网格。二维网格的生成只是使用所提出的专家系统的第一步;将来我们将针对 3D 网格扩展它。在过去十年中,大量研究致力于将前沿技术扩展到并行计算机 [8, 10, 11]。但是将该技术应用于并行处理器仍然具有挑战性。事实上,我们必须解决如何在子域的网格生成过程中最小化处理器间通信。建议的复杂结构网格生成专家系统使其能够与并行计算机一起使用。在第一步,离散化域被分解为子域,并且定义要网格化的子域边界的所有表面都被三角化。之后所有子域可以同时网格化,不再需要处理器间通信。主任务向工作任务发送关于划分公共边界的信息和每个子域的信息。工人任务接收他们的子域数据并网格化他们的子域。后来master收到了wo发来的信息rkers 任务并将网格子域加入到一个结构中,确保公共边界上节点的兼容性。 因此,这个建议的专家系统能够最大限度地减少计算的通信和成本。 专家系统在并行处理器上的实现将在未来完成。首次在线发布:2012 年 7 月 26 日

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号