首页> 外文OA文献 >Determination of vadose zone and saturated zone nitrate lag times using long-term groundwater monitoring data and statistical machine learning
【2h】

Determination of vadose zone and saturated zone nitrate lag times using long-term groundwater monitoring data and statistical machine learning

机译:使用长期地下水监测数据和统计机器学习测定散囊区和饱和区硝酸盐滞后时间

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, we explored the use of statistical machine learning and long-term groundwater nitrate monitoring data to estimate vadose zone and saturated zone lag times in an irrigated alluvial agricultural setting. Unlike most previous statistical machine learning studies that sought to predict groundwater nitrate concentrations within aquifers, the focus of this study was to leverage available groundwater nitrate concentrations and other environmental variables to determine mean regional vertical velocities (transport rates) of water and solutes in the vadose zone and saturated zone (3.50 and 3.75 m yr−1, respectively). The statistical machine learning results are consistent with two primary recharge processes in this western Nebraska aquifer, namely (1) diffuse recharge from irrigation and precipitation across the landscape and (2) focused recharge from leaking irrigation conveyance canals. The vadose zone mean velocity yielded a mean recharge rate (0.46 m yr−1) consistent with previous estimates from groundwater age dating in shallow wells (0.38 m yr−1). Thesaturated zone mean velocity yielded a recharge rate (1.31 m yr−1) that was more consistent with focused recharge from leaky irrigation canals, as indicated by previous results of groundwater age dating in intermediate-depth wells (1.22 m yr−1). Collectively, the statistical machine learning model results are consistent with previous observations of relatively high water fluxes and short transit times for water and nitrate in the primarily oxic aquifer. Partial dependence plots from the model indicate a sharp threshold in which high groundwater nitrate concentrations are mostly associated with total travel times of 7 years or less, possibly reflecting some combination of recent management practices and a tendency for nitrate concentrations to be higher in diffuse infiltration recharge than in canal leakage water. Limitations to the machine learning approach include the non-uniqueness of different transport rate combinations when comparing model performance and highlight the need to corroborate statistical model results with a robust conceptual model and complementary information such as groundwater age.
机译:在这项研究中,我们探讨了使用统计机器学习和长期地下水硝酸盐监测数据来估算灌溉冲积农业环境中的散塞区和饱和区滞后时间。与最先前的统计机器学习研究不同,寻求预测含水层内的地下水硝酸盐浓度,本研究的重点是利用可用的地下水硝酸盐浓度和其他环境变量,以确定水和溶质的平均区域垂直速度(运输速率)在VADOSE中区域和饱和区(分别为3.50和3.75米)。统计机器学习结果与本网内卡拉斯加州含水层中的两个主要充电过程一致,即(1)漫射和横跨景观的灌溉和降水的漫反射,(2)从泄漏灌溉输送运河中的灌溉充电。 Vadose区的平均速度产生平均充电率(0.46米YR-1),其与以往的地下室年龄达到浅孔(0.38米YR-1)的估计一致。腐蚀的区域平均速度产生了充电率(1.31米YR-1),与漏灌煤中的聚焦补给更符合漏油灌溉运河,如前型井在中间深度孔(1.22米YR-1)的地下室增长结果所示。集体,统计机器学习模型结果与先前的水势相对高的水势和硝酸盐在主要氧含水层中的短途分流时间一致。来自模型的部分依赖性图表明,高层地下水硝酸盐浓度主要与7年或更小的总行程时间相关,可能反映了近期管理实践的某些组合和硝酸盐浓度在弥漫性渗透补充中更高的趋势而不是运河泄漏水。当比较模型性能时,对机器学习方法的限制包括不同运输速率组合的非唯一性,并突出需要用强大的概念模型和诸如地下时代的互补信息来证实统计模型结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号