首页> 外文OA文献 >A cloud-based, predictive and context-aware system for ambient assisted living
【2h】

A cloud-based, predictive and context-aware system for ambient assisted living

机译:基于云的预测和上下文感知系统,用于环境辅助生活

摘要

Ambient assisted living (AAL) technology provides the opportunity for people with disabilities or chronic medical conditions to lead independent lives in their home, relying on wearable sensors and intelligent processing services for the care of their health. The concept of context-awareness is used in AAL to identify current medical conditions and potential abnormalities of a user (patient or elderly). It facilitates the decision-making tasks of health professionals in real-time through remote monitoring, thereby protecting a user from possible health-related risks. The accurate detection of user-specific anomalies, prediction of future events and real-time decision support require intelligent analysis on large biomedical data gathered from many AAL users. This necessitates the need of a scalable system with large storage and high processing capability to support multiple AAL systems simultaneously with individualized context-aware services. The work herein seeks to address such issues and develop a cloud-based context-aware system for AAL that also solves problems regarding clinical abnormalities detections and predictions by discovering personalized knowledge through using context correlations and different data mining techniques. Chronically ill patients die of various diseases from the lack of an efficient automated system having predictive ability. Traditional healthcare solutions are limited to some specific services. While learning models have been developed, they are based on generalized observations and suffer high false alert rates when uncertainties in data increase. Considering these drawbacks this research realizes the need for a self-care, predictive and protective assisted living system where a patient's personalized knowledge is developed by learning from large amounts of historical and contextual data. In an AAL system, a patient is monitored using wearable sensors. These biomedical sensors lack the processing power to perform monitoring, analysis and data-aggregation tasks, necessitating data transmission and computation at central locations. The resource-constrained nature of typical wearable sensors is factored into this research, with cloud computing features utilized to provide a real-time service. Moreover, this study focuses on the development of learning techniques to transform large biomedical data into useful knowledge using a cloud-based framework. This research is intended to explore the machine-learning methods that suit large scale data analyses and exhibit high accuracy and efficiency. We begin by designing a cloud-oriented context-aware middleware (CoCaMAAL) which has the ability to support patients of multiple AAL systems in parallel and independently. Here we introduce how different tasks such as data processing, learning, and context aggregation can be distributed in multiple cloud components by efficiently utilizing cloud resources. We then extend the capability of the model to capture individualized knowledge from big data. We realize that context-aware data of AAL systems satisfy the characteristics of big data (i.e. volume, variety and velocity) and develop a learning model using MapReduce Apriori to discover personalized knowledge by relying on historical big data and context correlations of a patient. The model is further used to find patient-specific abnormalities in the current context, acknowledging that the level of abnormality varies among individuals and in different situations. However, this model lacks the capability of predicting future changes. Therefore in the next step, we build pattern recognition models for predicting health-related changes and behavioural trends in a patient. The proposed techniques are evaluated for different patient scenarios. Moving beyond the feature of future abnormality estimation, we limited our focus only to some clinical event predictions based on the correlations of multiple vital signs (e.g. heart rate, blood pressure) considering the context as an interrelation among vital signs. We target to solve two types of problem: firstly, prediction of patient's future clinical behaviour using only his/her own data, and secondly, prediction of different clinical events of a patient using available known knowledge involving many similar patients. We aim to build these learning models with continuous prediction capability. We have used patient data from publicly available database. All the experiments are conducted using cloud platforms. The purpose of the first problem is to predict the clinical behaviour of a patient in the near future by continuously developing the knowledge from that individual's recent past data. This problem is addressed by developing a learning engine using multi-label classification. The model is patient-specific, adaptive and continuous; it can achieve multiple targets simultaneously. To resolve the second problem, given that a large number of labelled samples from many patients are available beforehand, we developed a probabilistic model using Hidden Markov Model and a static predictor model using data mining algorithms. The probabilistic model predicts approaching clinical events of a patient using temporal behaviour of six bio-signals. This model does not have any forecast margin and uses a few samples for model development. The static predictor model uses a large number of samples for training, varieties of features (e.g. wavelets, correlation coefficients and short-term statistics) and a long forecast gap. However, the prior knowledge about similar clinical conditions may not be always available. Therefore, we developed a new patient clustering method to identify similar patients based on the correlations in clinical data. We developed an unsupervised patient-specific pattern discovery method where multiple vital signs are characterized to a number of dynamic states using entropy criteria. A similarity analysis is then performed over features extracted from dynamic states of multiple patients using hierarchical clustering which can estimate similar patient subgroups. The experimental results indicate that the proposed algorithm can identify different patient subgroups with high accuracy. In a nutshell, this thesis contains problem-specific efficient learning algorithms that can be employed for context-aware sensing in an AAL system by utilizing cloud platforms. This research mostly utilized existing data mining models to solve problems on abnormality detection, prediction and knowledge discovery. The solutions addressed the scalability issues and can work on big biomedical data effectively and accurately. Therefore, the research contributions in this thesis present a scalable model to provide versatile and reliable context-aware services using proper machine-learning models. We believe that this research is a big step towards building a generic model for the AAL community and the results can inspire and be used for the development of efficient learning models for home-based monitoring.
机译:环境辅助生活(AAL)技术为残疾人或慢性病患者提供了机会,他们依靠可穿戴式传感器和智能处理服务来在家中过独立的生活,以保护他们的健康。上下文感知的概念在AAL中用于识别当前的医疗状况和用户(患者或老人)的潜在异常情况。通过远程监控,它可以实时帮助医疗专业人员进行决策,从而保护用户免受与健康相关的风险。准确检测特定于用户的异常,预测未来事件以及实时决策支持,需要对从许多AAL用户那里收集的大型生物医学数据进行智能分析。这就需要具有大存储量和高处理能力的可伸缩系统,以同时支持多个AAL系统和个性化的上下文感知服务。本文的工作旨在解决此类问题,并开发用于AAL的基于云的上下文感知系统,该系统还可以通过使用上下文关联和不同的数据挖掘技术来发现个性化知识,从而解决有关临床异常检测和预测的问题。慢性病患者由于缺乏具有预测能力的有效自动化系统而死于各种疾病。传统医疗保健解决方案仅限于某些特定服务。虽然已经开发了学习模型,但是它们基于普遍的观察,并且当数据的不确定性增加时,遭受高误报率。考虑到这些缺点,本研究认识到需要一种自我保健,预测性和保护性辅助生活系统,该系统通过从大量历史和背景数据中学习来发展患者的个性化知识。在AAL系统中,使用可穿戴式传感器监视患者。这些生物医学传感器缺乏执行监视,分析和数据聚合任务的处理能力,因此需要在中心位置进行数据传输和计算。典型的可穿戴传感器的资源受限性质被纳入了这项研究,并利用云计算功能来提供实时服务。此外,本研究重点在于使用基于云的框架将大型生物医学数据转化为有用知识的学习技术的发展。这项研究旨在探索适合大规模数据分析并展现出高精度和高效率的机器学习方法。我们从设计面向云的上下文感知中间件(CoCaMAAL)开始,该中间件具有支持并行且独立地支持多个AAL系统的患者的能力。在这里,我们介绍如何通过有效利用云资源,将不同的任务(如数据处理,学习和上下文聚合)分配到多个云组件中。然后,我们扩展了模型的功能,以从大数据中捕获个性化知识。我们意识到AAL系统的情境感知数据可以满足大数据的特征(即数量,种类和速度),并开发一种使用MapReduce Apriori的学习模型,以依靠历史大数据和患者的情境关联来发现个性化知识。该模型还用于在当前情况下查找特定于患者的异常,并确认异常的程度因人而异且在不同情况下有所不同。但是,该模型缺乏预测未来变化的能力。因此,在下一步中,我们将建立模式识别模型,以预测患者的健康相关变化和行为趋势。针对不同的患者情况对提出的技术进行了评估。除了未来异常估计的功能之外,我们将注意力仅局限于基于多个生命体征(例如心率,血压)的相关性的一些临床事件预测,并将上下文视为生命体征之间的相互关系。我们的目标是解决两种类型的问题:首先,仅使用他/她自己的数据预测患者的未来临床行为,其次,使用涉及许多相似患者的已知知识预测患者的不同临床事件。我们旨在建立具有连续预测能力的学习模型。我们使用了公开数据库中的患者数据。所有实验均使用云平台进行。第一个问题的目的是通过不断地从个人最近的过去数据中获得知识,来预测患者在不久的将来的临床行为。通过开发使用多标签分类的学习引擎来解决此问题。该模型是针对特定患者的,自适应的和连续的;它可以同时实现多个目标。解决第二个问题,因为事先有许多患者的大量标记样品可供使用,我们使用隐马尔可夫模型开发了概率模型,并使用数据挖掘算法开发了静态预测器模型。概率模型使用六个生物信号的时间行为来预测患者即将发生的临床事件。该模型没有任何预测余量,并使用一些样本进行模型开发。静态预测器模型使用大量样本进行训练,使用各种特征(例如小波,相关系数和短期统计数据)以及较长的预测间隔。但是,关于相似临床状况的先验知识可能并不总是可用。因此,我们开发了一种新的患者聚类方法,可以根据临床数据中的相关性来识别相似的患者。我们开发了一种无监督的患者特定模式发现方法,其中使用熵标准将多个生命体征表征为许多动态状态。然后使用可估计相似患者亚组的分层聚类对从多个患者的动态状态中提取的特征进行相似性分析。实验结果表明,该算法可以准确识别不同的患者亚组。概括地说,本文包含特定于问题的有效学习算法,该算法可通过利用云平台用于AAL系统中的情境感知感测。这项研究主要利用现有的数据挖掘模型来解决异常检测,预测和知识发现方面的问题。这些解决方案解决了可伸缩性问题,可以有效,准确地处理大型生物医学数据。因此,本文的研究成果提出了一种可扩展的模型,可以使用适当的机器学习模型来提供通用且可靠的上下文感知服务。我们认为,这项研究是朝建立AAL社区通用模型迈出的一大步,其结果可以启发并用于开发基于家庭监控的高效学习模型。

著录项

  • 作者

    Forkan A;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号