首页> 外文OA文献 >Investigation of fluid-dynamic cavity oscillations and the effects of flow angle in an automotive context using an open-jet wind tunnel
【2h】

Investigation of fluid-dynamic cavity oscillations and the effects of flow angle in an automotive context using an open-jet wind tunnel

机译:使用开放式喷射风洞研究流体动力腔振荡和汽车环境中流动角的影响

摘要

Aeroacoustic whistles are a significant source of customer complaints to automotive manufacturers. Whistles can occur on many such components, but the relative position and configuration of rearview mirrors means they are a more problematic source of tonal noise on vehicles. The low subsonic complex turbulent flow, combined with small cavity scales, determines the possible whistle mechanisms. The one considered to be most problematic, fluid-dynamic cavity resonance, is the topic of this research thesis. The research scope is limited to the automotive environment of external rearview mirrors and the fluid-dynamic resonance mechanism: low subsonic Mach number, M = 0.05 - 0.13; laminar boundary layers; and two-dimensional, acoustically compact cavities. The low unit-cost of rearview mirrors and the desire to have simple identification and prediction schemes, that could be used by p roduction engineers, determined an empirical approach. A search of the existing literature revealed that there were some data on cavities of the above scale in low Mach number flow, but quoted errors in empirical descriptions were large and there was very little research on the effects of flow yaw angle on the chosen resonance mechanism. The research therefore aims to determine whether existing empirical descriptions of fluid-dynamic cavity resonance are suitable for the prediction of the resonance characteristics, with sufficient accuracy to enable unambiguous identification of the presence of the resonance and its mechanism. A second aim is to investigate the effects of a feature of the automotive flow environment, flow yaw angle, on the resonance. Flow yaw angle is determined by those components of the flow in the same plane as the surface in which the cavity is situated. An experimental program was undertaken using a purpose-built aeroacoustic wind tunnel and a simple cavity model. Testing with two types of cavity configurations, as well as flow visualisation, investigated the main features of the resonance in time-averaged yawed flow. Within the scope of this thesis, it is shown that fluid-dynamic cavity resonance characteristics can be accurately identified by a simple empirical model, even in yawed flow. Various descriptors allow identification of the resonance threshold, stage, frequency and relative amplitude in non-yawed flow, while the frequency and stage can also be identified in yawed flow. The relative decrease in resonance amplitude in yawed flow, although identified for these experiments, would depend on the degree of spanwise variation in the boundary layer characteristics for a given cavity configuration. The results also identify significant issues with testing in a free jet tunnel, due to the nature of fluid-dynamic cavity resonance and the fluctuation energy content in free shear layers. Despite this, the thesis aims are achieved, and appropriate design guidelines are produced for automotive designers.
机译:气声哨是引起汽车制造商抱怨的重要原因。在许多这样的部件上都可以吹哨,但是后视镜的相对位置和配置意味着它们是车辆音调噪声的一个更成问题的来源。低亚音速复杂湍流,再加上小腔垢,决定了可能的啸叫机制。被认为是最有问题的一个是流体动力腔共振,是本研究的主题。研究范围限于外部后视镜的汽车环境和流体动力共振机制:亚音速马赫数低,M = 0.05-0.13;层状边界层和二维的,声音紧凑的空腔。后视镜的低单位成本以及生产工程师可以使用的简单识别和预测方案的需求决定了一种经验方法。对现有文献的研究表明,在低马赫数流动中,有一些关于上述尺度的空腔的数据,但是经验描述中引用的误差很大,而且关于偏航角对所选共振机理影响的研究很少。 。因此,该研究旨在确定现有的流体动力学空腔共振的经验描述是否适合于共振特征的预测,并且具有足够的准确性以能够明确识别共振的存在及其机理。第二个目的是研究汽车流动环境特性(流动偏航角)对共振的影响。流动偏航角由与腔所在表面相同的平面中的那些流分量确定。使用专用的空气声风洞和简单的空腔模型进行了实验程序。使用两种类型的腔体配置进行测试,以及进行流量可视化,研究了时间平均偏航中共振的主要特征。在本文的研究范围内,表明即使在偏航流中,流体动力学空腔的共振特性也可以通过简单的经验模型来准确识别。各种描述符可以识别非偏航流中的共振阈值,级,频率和相对振幅,而频率和级也可以在偏航流中进行识别。尽管已针对这些实验确定了偏航流中共振振幅的相对降低,但将取决于给定腔体构造的边界层特性在翼展方向上的变化程度。由于流体动力腔共振的性质以及自由剪切层中的波动能量含量,结果还确定了在自由射流隧道中进行测试的重大问题。尽管如此,仍然可以达到论文的目的,并为汽车设计师提供适当的设计指南。

著录项

  • 作者

    Milbank J;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号