首页> 外文OA文献 >Sleep synchronisation, sleep onset staging and arousal detection: a polysomnogram signal analysis of sleep insomnia and schizophrenia
【2h】

Sleep synchronisation, sleep onset staging and arousal detection: a polysomnogram signal analysis of sleep insomnia and schizophrenia

机译:睡眠同步,睡眠起始分期和觉醒检测:睡眠失眠和精神分裂症的多导睡眠图信号分析

摘要

The present thesis discusses advanced polysomnogram signal processing approaches to perform computer-assisted sleep analysis and disorders characterisation and differentiation. Sleep electrophysiology and biomedical signal processing are branded by time-consuming assessments, inter-subjects' and inter-raters' variability. Those challenges compromise the analysis, characterisation and differentiation in terms of time analysis, tolerance to subjects' out-of-norm patterns and raters' biased sleep stages scoring. The proposed models explored computer-aided neuronal-cardiac synchronisation, sleep onset staging and arousal detection; looking forward to improve regular and abnormal sleep characterisation. Foremost, the differentiation of control, insomnia and schizophrenia groups and individuals was pursued throughout computational models and actual clinical datasets. Four core studies elaborated the literature background, methods, models, experimental datasets, data analysis and insights to attain sleep, groups and individuals characterisation. These interrelated studies built up an initial preprocessing model, going through sleep onset, insomnia characterization to achieve subjects and groups differentiation. The first core study focused on the computer-assisted preprocessing of polysomnogram signals. Preprocessing addressed the removal of embedded cardiac-type pulses and muscular artefacts, accompanied by the suppression or attenuation of the additive white noise from cortical and ocular signals. The proposed model successfully performed artefact removal upon 80% of the 1200 analysed electroencephalographic (EEG) and electrooculographic (EOG) epochs and 100% concerning background noise suppression. The second core study concerned the synchronisation between the central and autonomic nervous system to characterise control, insomnia and schizophrenia cohorts. The calculation of computer-assisted correlation, coherence and coupling metrics measured the neuronal-cardiac functional interdependence by means of EEG and electrocardiographic (ECG) signals. Those approaches represented linear, nonlinear and statistical methods. The spectral synchrogram derived from Wavelet-based coherence outperformed the characterisation of control and schizophrenia groups by tracking the interdependence of EEG alpha band to Heart Rate Variability Low Frequency (HRV-LF) as driving feature. The third core study centred in sleep onset staging for a computer-aided estimation of the sleep onset stages, and the computer-aided differentiation of control and insomnia individuals. Firstly, the approach introduced adaptive processing and machine learning tools for the automated sleep staging. Secondly, the approach suggested novel characterisation metrics for the differentiation of control, insomnia and schizophrenia cohorts dealing with out-of-norm patterns and raters' biased sleep stages scoring. The introduced biosignal modelling generalised polysomnogram signals made of thousands of time points with only 10 reconstructive coefficients. The performance metrics of control and insomnia subjects' logistic classifier highly rated: sensitivity (87%), specificity (75%) and accuracy (81%). The fourth core study appointed the computer-aided arousal marking, performing fuzzy logic-based detection. The model identified spontaneous arousals, EEG with chin tension and limb movement-related arousals. The model demonstrated an average Arousal Index (ArI) in regular sleepers around 20, which agreed with expert scored assessments. Overall, this original research work provides novel contributions in biomedical signal processing and a supporting role in the sleep electrophysiology towards a more comprehensive knowledge of insomnia and schizophrenia disorders.
机译:本文讨论了先进的多导睡眠图信号处理方法,以执行计算机辅助的睡眠分析以及疾病的表征和区分。睡眠电生理学和生物医学信号处理通过耗时的评估,受试者之间和评定者之间的可变性来标记。这些挑战在时间分析,对受试者超出标准的模式的耐受性以及评估者偏向的睡眠阶段评分等方面损害了分析,表征和区分。拟议的模型探索了计算机辅助的神经元-心脏同步,睡眠发作分期和唤醒检测。期待改善常规和异常睡眠特征。最重要的是,在整个计算模型和实际临床数据集中追求了对照,失眠和精神分裂症组和个人的区分。四项核心研究详细阐述了文献背景,方法,模型,实验数据集,数据分析和见解,以了解睡眠,群体和个人的特征。这些相互关联的研究建立了初始的预处理模型,通过睡眠发作,失眠表征来实现受试者和组的分化。第一项核心研究的重点是多导睡眠图信号的计算机辅助预处理。预处理解决了去除嵌入的心脏型脉搏和肌肉伪影的问题,并伴随着来自皮层和眼部信号的附加白噪声的抑制或衰减。所提出的模型在1200次分析的脑电图(EEG)和眼电图(EOG)时期中的80%以及关于背景噪声抑制的100%上成功完成了伪影去除。第二项核心研究涉及中枢神经和自主神经系统之间的同步性,以表征控制,失眠和精神分裂症人群。计算机辅助相关性,相干性和耦合度量的计算通过EEG和心电图(ECG)信号测量了神经元-心脏功能的相互依赖性。这些方法代表线性,非线性和统计方法。通过跟踪脑电图alpha波段与心率变异性低频(HRV-LF)作为驱动特征的相互依赖性,从基于小波的相干性得出的频谱同步图优于控制组和精神分裂症组的特征。第三项核心研究集中在睡眠发作阶段,以计算机辅助评估睡眠发作阶段,以及计算机辅助控制和失眠个体的分化。首先,该方法引入了用于自动睡眠阶段的自适应处理和机器学习工具。其次,该方法提出了新颖的表征指标,用于区分控制,失眠和精神分裂症人群,以应对超出正常水平的模式和评估者偏向睡眠阶段的得分。引入的生物信号建模广义化了由数千个时间点组成的多导睡眠图信号,而重构系数仅为10个。对照和失眠受试者的逻辑分类器的性能指标得到高度评价:敏感性(87%),特异性(75%)和准确性(81%)。第四项核心研究指定了计算机辅助唤醒标记,执行基于模糊逻辑的检测。该模型可识别自发性唤醒,下巴紧张性脑电图和与肢体运动有关的唤醒。该模型显示了20个左右的常规卧铺的平均唤醒指数(ArI),与专家评分评估相符。总体而言,这项原始的研究工作为生物医学信号处理提供了新的贡献,并在睡眠电生理学中起到了支持作用,有助于人们更全面地了解失眠和精神分裂症。

著录项

  • 作者

    Chaparro Vargas R;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号