首页> 外文OA文献 >Optimisation of noble metal nanoparticle biosynthesis by both a prokaryotic and eukaryotic host
【2h】

Optimisation of noble metal nanoparticle biosynthesis by both a prokaryotic and eukaryotic host

机译:通过原核和真核宿主优化贵金属纳米颗粒的生物合成

摘要

The aims of this work were to explore novel biosynthetic methods to produce metal nanoparticles (MNPs) with short synthesis time and focussed particle size distribution. Current methods for the synthesis of MNPs use potentially hazardous compounds or extreme synthesis conditions, which raises concerns about their environmental impact, in-vivo toxicity and cost of synthesis. MNP biosynthesis in microorganisms have been attempted to lower the environmental impact and cost of nanoparticle and nanomaterials. Although microbial biosynthesis is inexpensive and does not involve the use of exogenous capping ligands/dispersing agents for MNP stabilization, it produces a nanoparticle population with a broad particle size distribution that is unsuitable for practical applications without further refinements.udIn this thesis, the problems of wide size distribution and slow synthesis kinetics, in bacterial, fungal and mammalian cell hosts are addressed. The introduction (Chapter 1) provides a broad introduction on nanoscience and nanotechnology, including an overview of MNP chemical synthesis methods. Chapter 2 describe the material and experimental methods relevant to this work. Chapter 3 reports MNP biosynthesis in the dissimilatory metal reducing microorganism Shewanella sp., and discusses the effect of mild electrochemical reducing potential on the biosynthesis rate and silver nanoparticles (AgNPs) size and distribution in Shewanella biofilms grown on carbon electrodes. Results show that the optimal reducing potential is -0.2 V vs. Ag/AgCl. AgNPs synthesis was slower at higher potential (0 V vs. Ag/AgCl), while electroplating was the prevalent process at -0.4 vs. Ag/AgCl. The particle size at -0.2 V vs. Ag/AgCl was 61 ± 1 nm.udIn Chapter 4, the mechanism of AuNP biosynthesis was studied in the fungi Rhizopus oryzae. Previous studies showed that redox enzymes located on the cell surface reduce Au3+ ions to AuNPs. A purified cell surface protein extract was used to generate small, uniform AuNPs. Since protein extraction may influence protein structure and the resulting AuNP size and shape, the modulatory effects of DTT, SDS and Triton X-100 extraction buffers on protein extraction and AuNP biosynthesis by the protein extracts were examined. Results show that 1% v/v Triton X-100 produces AuNPs with the best size distribution (19 ± 1nm), crystallinity and antimicrobial activity.ud7udFinally, the biosynthesis of gold nanoparticles (AuNPs) using mammalian vascular endothelial and smooth muscle cells was examined in vitro in Chapter 5. Cell culture conditions such as phosphate buffer and foetal bovine serum (FBS) concentration were optimised as well as initial Au concentration. The AuNPs produced under optimal conditions were semi crystalline in nature. The average particle sizes were 23 ± 2nm for endothelial cells and 23 ± 4nm for smooth muscle cells, respectively. Results suggest that the production of reactive oxygen species during oxidative stress reduced the Au3+ ions, although there may also be some Au3+ reducing activity in the secretome.udTaken together, these studies suggest that MNPs size distribution is an inherent problem of the biosynthetic process, and that MNP mean size is influenced by reducing potential, protein structure, and cell type. Crystallinity of the MNPs is dependent on the temperature of the synthesis, rather than the cell type, reducing potential or protein structure. Further the protein capping ligands uncovered in this study is predominantly proteins, although their identity is not yet clear. The use of fungal protein extracts is the most ideal strategy for MNP biosynthesis, specifically Triton X-100 protein cell extract, due to the low cost of synthesis compared to the mammalian cell culture, smaller size compared to the bioelectrochemical synthesis and repeatability. Bioelectrochemical synthesis is a promising alternative, however further optimisation is required to lower MNP size and size distribution. Bovine aortic smooth muscle cells produced a high concentration of AuNPs, may be an ideal eukaryotic host for the production of biocompatible AuNPs for in-vivo use, however a comprehensive toxicity study of these AuNPs is required.
机译:这项工作的目的是探索新颖的生物合成方法,以生产具有短的合成时间和集中的粒度分布的金属纳米粒子(MNP)。当前合成MNP的方法使用潜在危险的化合物或极端合成条件,这引起了对它们的环境影响,体内毒性和合成成本的担忧。已经尝试了微生物中的MNP生物合成以降低环境影响以及纳米颗粒和纳米材料的成本。尽管微生物的生物合成成本低廉,并且不涉及使用外源的封端配体/分散剂来稳定MNP,但微生物产生的纳米粒子种群具有较宽的粒径分布,如果不进行进一步的改进,则不适合实际应用。 ud解决了在细菌,真菌和哺乳动物细胞宿主中的大尺寸分布和缓慢的合成动力学。简介(第1章)提供了有关纳米科学和纳米技术的广泛介绍,包括MNP化学合成方法的概述。第2章介绍了与此工作相关的材料和实验方法。第3章报道了异化金属还原微生物Shewanella sp。中的MNP生物合成,并讨论了温和的电化学还原电势对碳电极上生长的Shewanella生物膜中生物合成速率和银纳米颗粒(AgNPs)大小和分布的影响。结果表明,最佳还原电势为-0.2 V,相对于Ag / AgCl。在较高电势下(0 V对Ag / AgCl),AgNPs的合成较慢,而对于Ag / AgCl,电镀是-0.4的普遍过程。 -0.2 V相对于Ag / AgCl的粒径为61±1 nm。 ud在第四章中,研究了米根霉菌中AuNP的生物合成机理。先前的研究表明,位于细胞表面的氧化还原酶将Au3 +离子还原为AuNPs。纯化的细胞表面蛋白提取物用于产生小的,均匀的AuNP。由于蛋白质的提取可能会影响蛋白质的结构以及所产生的AuNP的大小和形状,因此研究了DTT,SDS和Triton X-100提取缓冲液对蛋白质提取物和蛋白质提取物AuNP生物合成的调节作用。结果表明1%v / v Triton X-100产生具有最佳尺寸分布(19±1nm),结晶度和抗菌活性的AuNPs。 ud7 ud最后,利用哺乳动物的血管内皮细胞和平滑肌生物合成金纳米颗粒(AuNPs)在第五章中对细胞进行了体外检查。优化了细胞培养条件,例如磷酸盐缓冲液和胎牛血清(FBS)浓度以及初始Au浓度。在最佳条件下生产的AuNPs本质上是半结晶的。内皮细胞的平均粒径为23±2nm,平滑肌细胞的平均粒径为23±4nm。结果表明,氧化应激过程中活性氧的产生会还原Au3 +离子,尽管分泌组中可能还会有一些Au3 +还原活性。 ud一起,这些研究表明MNP的大小分布是生物合成过程的固有问题,而且MNP的平均大小受电位,蛋白质结构和细胞类型减少的影响。 MNP的结晶度取决于合成温度,而不是细胞类型,从而降低了电位或蛋白质结构。此外,本研究中发现的蛋白质加帽配体主要是蛋白质,尽管它们的身份尚不清楚。真菌蛋白提取物的使用是MNP生物合成的最理想策略,特别是Triton X-100蛋白细胞提取物,因为与哺乳动物细胞培养相比,合成成本低,与生物电化学合成和可重复性相比,尺寸较小。生物电化学合成是一种有前途的替代方法,但是需要进一步优化以降低MNP尺寸和尺寸分布。牛主动脉平滑肌细胞产生高浓度的AuNPs,可能是体内生产生物相容性AuNPs的理想真核宿主,但是需要对这些AuNPs进行全面的毒性研究。

著录项

  • 作者

    Kitching Michael;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号