首页> 外文OA文献 >The Paparua landfill: Hydrogeological, geophysical and hydrogeochemical investigations of groundwater contamination by Leachate, Christchurch, New Zealand
【2h】

The Paparua landfill: Hydrogeological, geophysical and hydrogeochemical investigations of groundwater contamination by Leachate, Christchurch, New Zealand

机译:Paparua垃圾填埋场:新西兰基督城渗滤液对地下水污染的水文地质,地球物理和水文地球化学调查

摘要

The impact of leachate generation and migration from unlined municipal solid waste landfills on the Canterbury groundwater resource, was investigated at the largest site, the Paparua County Council Landfill. The 8 ha. landfill is located centrally within the western unconfined zone of the extensive 500 m thick glaciofluvial aquifer system. This unconfined area recharges deeper confined aquifers in the east, which underlie Christchurch City (pop. 300000) providing its sole drinking-water supply. Between its conversion from a gravel pit in 1973 and closure in July 1978, the site periodically operated as a wet landfill and rates a high pollution potential classification (DRASTIC Index = 187, Le Grand +14G). However, leachate is confined to a 200 m x 200 m area in the northeast of the site, between the depths of 6 m and 9 m, by an underlying silty sand aquitard. Landfill stratigraphy was determined from Wenner and Schlumberger soundings. Best-fit sounding models indicated leachate with a 2.3 to 6.7 Ωm layer, underlying unsaturated refuse (19.6 to 30.1 Ωm), and overlying silty sand (50 Ωm to 77 Ωm) and sandy gravels (>300 Ωm). Resistivity profiling at a= 15 m and a=30 m spacings, revealed a low resistivity zone restricted both laterally and vertically to the northeast comer of the site. This zone, taken to represent leachate, exhibited slight southeast migration on the deeper penetrating profile. Down-hole nuclear geophysical logging did not detect the contaminant zone, but the landfill boundary was identified on a seismic traverse by a lack of refraction of the critical ray over refuse infilled land. Beneath the 6 m deep landfill, a 1.5 to 8 m thick silty sand was detected in 4 lithologically logged wells installed at the site. The hydraulic conductivity of this unit at 2.9 x 10-9 to 3.2 X 10-7 m/s is significantly less than the 2.39 x 10-3 m/s of the underlying sediments. The silty sand therefore functions as an aquitard, producing a perched watertable in the overlying refuse and inhibiting downward leachate percolation as illustrated by resistivity pseudosections. In the deeper gravels and sandy gravels, point dilution tests showed that seepage velocities varied from 8.3 x 10-7 to 2.7 x 10-3 m/s and exhibited a strong relationship to uniformity coefficients of the sediments. Laterally continuous high velocity zones within deeper gravels could act as rapid dilution and transport zones for contaminants permeating through the aquitard. Resistivity profiling dictated the installation positions of 16 monitoring wells. The presence of leachate was confirmed with groundwater samples from the northeast corner of the site contaminated with up to 160 mg/l NH4-N, 0.11 mg/l Cu, 270 mg/l CI, 210 mg/l Na, 2.8 mg/l B, high levels of Ca, Mg and high chemical oxygen demands. In these samples, total dissolved solids ranged from 1238 to 1736 mg/l and total organic carbon ranged from 58.8 to 98.7 mg/I. Amines, ketones and terpenes which result from the anaerobic degradation of putrescible refuse were detected. Alkyl benzenes, S- and N- heterocyclic compounds, and xylenes, at 5 mg/m3 in one sample, were the only synthetic organic compounds found. In groundwater beneath the aquitard and downgradient of the northeast zone, these substances were below detection limits. The landfill presently poses no significant threat to the quality of the underlying groundwater resource. However, leachate confinement by fortuitous hydrogeologic factors at the Paparua County Council Landfill cannot be taken as indicative of leachate behaviour at other unlined landfills in Canterbury, nor should the present site conditions be regarded as invariant. This study illustrates the importance of a site-specific investigation in gauging leachate effects, demonstrating the value of an integrated approach using techniques previously unapplied to New Zealand landfills.
机译:在最大的站点帕帕鲁瓦县议会垃圾填埋场调查了渗滤液产生和从未衬砌的城市固体垃圾填埋场迁移对坎特伯雷地下水资源的影响。 8公顷。垃圾填埋场位于广泛的500 m厚的冰川河流含水层系统的西部无限制区内。这个无人区为东部的更深的受限含水层补给水,这是克赖斯特彻奇市(人口300000)的基础,提供唯一的饮用水供应。从1973年从砾石坑转换到1978年7月关闭之间,该站点定期作为湿垃圾场运行,并具有高污染可能性等级(DRASTIC指数= 187,Le Grand + 14G)。然而,渗滤液被位于该地点东北部的一个200 m x 200 m的区域限制在6 m至9 m的深度之间,这是由下面的粉质沙质阿基塔德组成的。垃圾填埋地层学是根据Wenner和Schlumberger测深确定的。最佳拟合测深模型表明渗滤液层为2.3至6.7Ωm,下层为非饱和垃圾(19.6至30.1Ωm),上覆粉砂(50 tom至77 sandm)和砂砾(> 300Ωm)。在a = 15 m和a = 30 m的间距处进行电阻率剖面分析,显示出一个低电阻率区域,该区域在横向和垂直方向上都局限于该站点的东北角。该区域代表渗滤液,在较深的渗透剖面上表现出轻微的东南向迁移。井下核地球物理测井未检测到污染物带,但由于缺乏对填埋垃圾的临界射线的折射,因此在地震横断面上确定了垃圾填埋场边界。在6 m深的垃圾填埋场下,在该位置安装的4口岩性测井中检测到1.5至8 m厚的粉砂。该单元在2.9 x 10-9至3.2 X 10-7 m / s的水力传导率显着小于其下层沉积物的2.39 x 10-3 m / s。因此,粉质砂子起着高等渗水的作用,在上面的垃圾中形成了一个高位的地下水位,并抑制了渗滤液向下渗透,如电阻率假剖面所示。在较深的砾石和沙砾中,点稀释试验表明,渗流速度从8.3 x 10-7到2.7 x 10-3 m / s不等,并且与沉积物的均匀性系数密切相关。在更深的砾石中,横向连续的高速区域可以作为污染物扩散通过水基的快速稀释和运输区域。电阻率曲线决定了16口监测井的安装位置。场地东北角的地下水样品被高达160 mg / l NH4-N,0.11 mg / l Cu,270 mg / l CI,210 mg / l Na,2.8 mg / l污染的地下水样品证实存在渗滤液B,高水平的Ca,Mg和高化学需氧量。在这些样品中,总溶解固体范围为1238至1736 mg / l,总有机碳范围为58.8至98.7 mg / l。可以检测到腐烂垃圾的厌氧降解产生的胺,酮和萜烯。在一个样品中,烷基苯,S-和N-杂环化合物以及二甲苯为5 mg / m3,是唯一发现的合成有机化合物。在东北地区的阿奎德(Aquitard)和降级以下的地下水中,这些物质低于检测极限。目前,垃圾填埋场对底层地下水资源的质量没有构成重大威胁。但是,不能将帕帕鲁瓦县议会垃圾填埋场因偶然的水文地质因素造成的渗滤液限制作为坎特伯雷其他未衬砌垃圾填埋场渗滤液行为的指示,也不应该将当前的场地条件视为不变。这项研究说明了针对特定地点进行调查以衡量渗滤液影响的重要性,证明了采用以前未应用于新西兰垃圾填埋场的技术的综合方法的价值。

著录项

  • 作者

    Smith Vivienne Ruth;

  • 作者单位
  • 年度 1992
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号