首页> 外文OA文献 >Low-power high-performance SAR ADC design with digital calibration techniques
【2h】

Low-power high-performance SAR ADC design with digital calibration techniques

机译:采用数字校准技术的低功耗高性能saR aDC设计

摘要

This dissertation presents the design of three high-performance successive-approximation-register (SAR) analog-to-digital converters (ADCs) using distinct digital background calibration techniques under the framework of a generalized code-domain linear equalizer. These digital calibration techniques effectively and efficiently remove the static mismatch errors in the analog-to-digital (A/D) conversion. They enable aggressive scaling of the capacitive digital-to-analog converter (DAC), which also serves as sampling capacitor, to the kT/C limit. As a result, outstanding conversion linearity, high signal-to-noise ratio (SNR), high conversion speed, robustness, superb energy efficiency, and minimal chip-area are accomplished simultaneously. The first design is a 12-bit 22.5/45-MS/s SAR ADC in 0.13-μm CMOS process. It employs a perturbation-based calibration based on the superposition property of linear systems to digitally correct the capacitor mismatch error in the weighted DAC. With 3.0-mW power dissipation at a 1.2-V power supply and a 22.5-MS/s sample rate, it achieves a 71.1-dB signal-to-noise-plus-distortion ratio (SNDR), and a 94.6-dB spurious free dynamic range (SFDR). At Nyquist frequency, the conversion figure of merit (FoM) is 50.8 fJ/conversion step, the best FoM up to date (2010) for 12-bit ADCs. The SAR ADC core occupies 0.06 mm2, while the estimated area the calibration circuits is 0.03 mm2.The second proposed digital calibration technique is a bit-wise-correlation-based digital calibration. It utilizes the statistical independence of an injected pseudo-random signal and the input signal to correct the DAC mismatch in SAR ADCs. This idea is experimentally verified in a 12-bit 37-MS/s SAR ADC fabricated in 65-nm CMOS implemented by Pingli Huang. This prototype chip achieves a 70.23-dB peak SNDR and an 81.02-dB peak SFDR, while occupying 0.12-mm2 silicon area and dissipating 9.14 mW from a 1.2-V supply with the synthesized digital calibration circuits included.The third work is an 8-bit, 600-MS/s, 10-way time-interleaved SAR ADC array fabricated in 0.13-μm CMOS process. This work employs an adaptive digital equalization approach to calibrate both intra-channel nonlinearities and inter-channel mismatch errors. The prototype chip achieves 47.4-dB SNDR, 63.6-dB SFDR, less than 0.30-LSB differential nonlinearity (DNL), and less than 0.23-LSB integral nonlinearity (INL). The ADC array occupies an active area of 1.35 mm2 and dissipates 30.3 mW, including synthesized digital calibration circuits and an on-chip dual-loop delay-locked loop (DLL) for clock generation and synchronization.
机译:本文在广义码域线性均衡器的框架下,采用独特的数字背景校准技术,提出了三种高性能逐次逼近寄存器(SAR)模数转换器的设计方案。这些数字校准技术可以有效地消除模数(A / D)转换中的静态失配误差。它们使电容式数模转换器(DAC)可以积极地缩放到kT / C极限,该DAC也可用作采样电容器。结果,同时实现了出色的转换线性,高信噪比(SNR),高转换速度,鲁棒性,出色的能效和最小的芯片面积。第一种设计是采用0.13μmCMOS工艺的12位22.5 / 45-MS / s SAR ADC。它基于线性系统的叠加特性,采用基于扰动的校准,以数字方式校正加权DAC中的电容器失配误差。在1.2V电源下具有3.0mW的功耗,且采样率为22.5MS / s,它实现了71.1dB的信噪比和失真比(SNDR),以及94.6dB的无杂散动态范围(SFDR)。在奈奎斯特频率下,转换品质因数(FoM)为50.8 fJ /转换步长,这是12位ADC迄今为止最好的FoM(2010年)。 SAR ADC内核占0.06 mm2,而校准电路的估计面积为0.03 mm2。第二种提出的数字校准技术是基于逐位相关的数字校准。它利用注入的伪随机信号和输入信号的统计独立性来校正SAR ADC中的DAC不匹配。这个想法在由Pingli Huang实现的以65nm CMOS制造的12位37-MS / s SAR ADC中得到了实验验证。该原型芯片可实现70.23 dB的峰值SNDR和810.22 dB的SFDR峰值,同时占用0.12 mm2的硅面积,并通过包括合成数字校准电路的1.2V电源消耗9.14 mW的功率。第三项工作是采用0.13μmCMOS工艺制造的8位,600-MS / s,10路时间交错SAR ADC阵列。这项工作采用自适应数字均衡方法来校准通道内非线性和通道间失配误差。原型芯片可实现47.4 dB的SNDR,63.6 dB的SFDR,小于0.30-LSB的差分非线性(DNL)和小于0.23-LSB的积分非线性(INL)。 ADC阵列的有效面积为1.35 mm2,耗散30.3 mW,包括合成数字校准电路和用于时钟生成和同步的片上双环延迟锁定环(DLL)。

著录项

  • 作者

    Liu Wenbo;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号