首页> 外文OA文献 >Performance and Optimization of Microchannel Condensers
【2h】

Performance and Optimization of Microchannel Condensers

机译:微通道冷凝器的性能与优化

摘要

This study is the first to document the condensation heat transfer performance of smalldiameter, microchannel tubes in crossflow heat exchange, and this study provides the fIrStsystematic evaluation of the effect of port ~hape on microchannel tube performance. Furthermore,this study is the flI'St to suggest methods for improving microchannel heat exchanger designs.We collected experimental data for flat, multiport tubes with hydraulic diameters in therange 0.6 mm S Db S 1.5 mm. The port shapes considered were circles, squares, triangles,enhanced squares, and small squares. We found that established relationships describe singlephasecircular-tube heat transfer and pressure drop behavior in microchannel tubes. Circular-tubecorrelations are appropriate for noncircular tubes if dimensionless numbers are formed withappropriate length scales. The wavy flow correlation of Dobson [1994] was found to predictaccurately condensing heat transfer in flows predicted to wavy. A slightly modified form of theDob~n [1994] annular flow correlation was found to predict accurately condensing heat transfer inflows predicted to be annular.An analytical study??of methods to improve microchannel condenser design was performed.We found that volume minimization is a comprehensive and reasonable objective for. thesuboptimization analysis. As condenser volume is reduced, system charge, condenser mass, andmaterial costs all decrease ???. ' . Refrigerant-side circuiting flexibility is the key that unlocks the potential of themicrochannel technology. With unconstrained refrigerant circuiting, smaller port diameters alwayslead to reduced condenser volume. However, the pressure-drop effect drives optimal condenserdesigns toward many tubes of short length, and the crossflow-heat-exchanger effect drives optimalcondenser designs toward many tubes of short length and few ports.We found that port shape significantly impacts condenser design. To achieve reducedinternal volume, the order of preference for port shapes is circle, square, and triangle. To achieveminimized external volume, the order of preference for port shapes is triangle, square, and circle.
机译:这项研究是第一个记录小直径微通道管在横流换热中的冷凝传热性能的研究,并且该研究提供了端口系统对微通道管性能影响的系统评价。此外,本研究首先提出了改进微通道换热器设计的方法。我们收集了液压直径在0.6 mm S Db S 1.5 mm范围内的扁平多端口管的实验数据。考虑的端口形状是圆形,正方形,三角形,增强的正方形和小正方形。我们发现已建立的关系描述了微通道管中的单相圆管传热和压降行为。如果无量纲的数字形成适当的长度刻度,则圆管相关性适用于非圆管。发现Dobson [1994]的波浪流动相关性可以准确地预测预测波浪流动中的热交换。发现Dob〜n [1994]环形流量相关关系的略微修改形式可以准确预测被预测为环形的冷凝传热流。对改进微通道冷凝器设计的方法进行了分析研究。我们发现体积最小化是全面合理的目标。次优化分析。随着冷凝器体积的减小,系统装料,冷凝器质量和材料成本全部降低。 '。制冷剂侧回路的灵活性是释放微通道技术潜力的关键。在制冷剂回路不受约束的情况下,较小的端口直径始终会导致冷凝器体积减小。但是,压降效应将最佳的冷凝器设计推向许多短管,而横流换热器效应将最佳的冷凝器设计推向许多短管和很少的端口,我们发现端口形状对冷凝器的设计有重大影响。为了减小内部体积,端口形状的优先顺序为圆形,正方形和三角形。为了使外部体积最小,端口形状的优先顺序为三角形,正方形和圆形。

著录项

  • 作者单位
  • 年度 1995
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号