首页> 外文OA文献 >Probing quantum phase slips in superconducting nanowires modified using high bias voltage pulses
【2h】

Probing quantum phase slips in superconducting nanowires modified using high bias voltage pulses

机译:探讨使用高偏压电压脉冲修正的超导纳米线中的量子相位滑移

摘要

Quantum phase slips (QPS) or the macroscopic quantum tunneling (MQT) of a nanowire???s order parameter through an activation energy barrier have remained the subject of intense debate for many years. They are expected to occur at low enough temperature where thermally activated phase slips (TAPS) have been frozen out in analogy with Josephson junctions where the macroscopic tunneling of phase at low temperatures has been conclusively experimentally demonstrated. We address this question by following a similar experimental strategy to that employed for establishing MQT in JJs. By measuring switching current distributions, we can probe the phase slip rate and determine if it corresponds to thermal activation or quantum tunneling. Having established that the behavior we see is consistent with being in the quantum regime, we can alter properties of the nanowires and see if the response is consistent with the expectations of the quantum model. To do this we employ an in-situ modification technique using high bias voltage pulses. Using these pulses, we can change resistance, critical temperature, critical current and morphology of the nanowire. We can also change the shunting capacitance of the nanowire by altering the photolithography step used to create the nanowires electrodes. The resulting response of the nanowires agrees well with being in the quantum tunneling dominated regime. An interesting side benefit of the pulsing technique is that we can exactly set the nanowires switching current to a desired value. This may be instrumental in the development of superconducting nanowire qubits.
机译:多年以来,通过激活能垒的纳米线的阶跃参数的量子相移(QPS)或宏观量子隧穿(MQT)一直是争论的主题。预期它们将在足够低的温度下发生,在该温度下,类似于约瑟夫森结,热活化的相移(TAPS)已被冻结,在结扎下已通过实验证明了低温下的宏观相隧道。我们通过遵循与在JJ中建立MQT所采用的实验策略相似的实验策略来解决此问题。通过测量开关电流分布,我们可以探测相移率,并确定其是否对应于热激活或量子隧穿。确定了我们看到的行为与处于量子状态时一致,我们可以更改纳米线的属性,并查看响应是否与量子模型的预期一致。为此,我们采用了使用高偏置电压脉冲的原位修改技术。使用这些脉冲,我们可以改变电阻,临界温度,临界电流和纳米线的形态。我们还可以通过更改用于创建纳米线电极的光刻步骤来更改纳米线的分流电容。纳米线的最终响应与量子隧穿为主的状态非常吻合。脉冲技术的一个有趣的附带好处是,我们可以精确地将纳米线的开关电流设置为所需的值。这可能有助于超导纳米线量子位的发展。

著录项

  • 作者

    Aref Thomas;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号